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Propensity Score Adjustments for Covariates in Observational Studies 

 

Chapter 1. INTRODUCTION 
 

This chapter provides a general introduction of the thesis.  In section 1.1, we 

describe missing data and the nonresponse problem.  In section 1.2, we introduce the 

response propensity score adjustment as a method to adjust for nonresponse.  In section 

1.3, we provide a brief review of propensity score methods, and in section 1.4 we 

summarize the contribution and organization of this thesis. 

 

1.1 Nonresponse and its mechanism 
 

Missing data is a common problem in the data collection process when the 

designated information of interest cannot be collected for a portion of the sampling units 

(Little and Rubin 2002).  In survey sampling, this problem is called nonresponse.  For 

example, in a mail survey, an invalid mailing address or a sampled subject choosing not 

to answer the questionnaire will both lead to nonresponse. In an economic status survey, 

subjects may be sensitive and reluctant to answer questions relating to income level, 

which leads to nonresponse.  In a medical therapy study, patients may drop out during the 

study period due to adverse side effects or lack of treatment benefits, leading to missing 

data.  Ignoring these observations can lead to biased results.  This thesis investigates 

ways to adjust for nonresponse. 
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In survey sampling, there are two types of nonresponse: unit nonresponse and 

item nonresponse.  Unit nonresponse implies that the entire unit or subject is missing.  In 

item nonresponse, the subject has not answered all the questions asked.  Only a portion of 

completed questions are obtained for that specific subject. 

 

Nonresponse or missing data can be classified into three mechanisms.  They are 

MCAR (missing complete at random), MAR (missing at random or ignorable) and 

nonignorable (informative) missing (Lohr 1999, Little and Rubin 2002).  In order to 

describe these mechanisms, let Y be the complete data matrix for the outcome variable of 

the sample, and it can be partitioned as Y = (Yo, Ym), where Yo represents the observed 

outcome and Ym represents the missing outcome; let X be the data matrix of covariates; 

let R be a vector of response/nonresponse indicator; let θ and φ be two sets of distinguish 

parameters corresponding to Yo, R, respectively.  The three mechanisms can be described 

as follows. 

 

Under MCAR, the nonresponses are independent of the outcome variable and the 

covariates.  This implies that respondents are representative of the selected sample.  The 

conditional probability density function (pdf.) of R can be simplified as fφ(R | Y, X) = 

fφ(R), which implies the joint pdf. fθ, φ(Yo, R) = fφ(R)fθ(Y
o).  For example, if a severe 

weather condition makes it impossible for a survey interviewer to meet with a sampled 

subject, or an electronic glitch causes some records to be lost in a medical study, this kind 

of missingness may have no relation to the outcome or covariates.  Therefore, the 

probability of response is independent of the observed outcomes, and the researcher can 
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analyze the completed data with no adjustment needed.  The sample results are 

representative of the population. 

 

Under MAR, the nonresponses depend on the covariates but not the missing 

outcome variable (Lohr 1999).  The conditional pdf. of R is then fφ(R | Y, X) = fφ(R | X).  

For example, the younger sampling subjects tend to refuse participation more often than 

older subjects.  In some cases, subjects with a higher level of education are more willing 

to participate than subjects with a lower level of education.  This type of missing 

mechanism can be explained by the corresponding covariates (e.g., age, education).  

MAR is also referred to as ignorable.  If the missingness has no relation to the missing 

outcome then the covariates can be used to make nonresponse adjustments.  Once the 

adjustment is implemented, the missing mechanism resembles MCAR. 

 

The nonignorable missing mechanism is the most difficult situation because the 

nonresponse mechanism depends on the missing outcome and cannot be fully explained 

by the covariates.  The conditional pdf. of R, fφ(R | Yo, Ym) does not have a simple 

expression, since the mechanism of nonresponse is more complex.  An example of this 

can be illustrated in a state tax survey.  Upper income level households may be less likely 

to respond to the survey and reveal their actual income than middle or lower income 

households, even though they have similar demographics in age category, race and 

gender.  For nonignorable missingness, strong modeling assumptions are necessary to 

account for nonresponse.  The analysis based only on the completed data or based on the 
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observed outcome and covariates will generate bias in the estimates (Little and Rubin 

2002).   

 

1.2 The response propensity scores adjustment 
 

Recently, some scholars suggest that MAR is the mechanism of nonresponse 

often found in most situations when missing data occurs (Bjørnstad 2007 and Chambers 

2007).  We will examine methods to adjust for the unit nonresponse under the MAR 

(ignorable) mechanism.  Lohr (1999) describes three traditional methods to deal with 

MAR in survey sampling: (1) weighting class adjustment (WCA), (2) post-stratification, 

and (3) imputation.  For the weighting class adjustment, demographic information is 

available on the entire sample.  Weighting classes are created, often using the 

demographic information.  The weighting class adjustment assumes that within a 

weighting class, the responses obtained from the responding subjects and nonresponding 

subjects are similar.  In addition, there is a differential response rate across demographic 

groups.  The idea of this method is to develop adjustment weights for the respondents in 

order to bring the balance of the demographics of the sample more in line to the 

population demographics.  Since the responses from the nonresponding individuals are 

not available, the WCA method uses demographic information obtained for the “original” 

sample (respondents and nonrespondents) to form non-overlapping subsets or weighting 

classes.  For example, age can be used to create non-overlapping weighting classes.  

Response rates often differ across age groups, with older individuals being more likely to 

respond than younger individuals.  Let πi be the selection probability of subject i in the 
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original sample, then the sampling weight of subject i is wi  = 1 / πi.  Let c be a weighting 

class (c ∈  Ζ+, i.e. positive integers); let sum(wc
r) denote the summation of sampling 

weights for respondents in weighting class c, and let sum(wc) denote the summation of 

weights for the original sample in weighting class c.  The response probability for each 

weighting class is estimated by cp̂  = sum(wc
r) / sum(wr).  Hence, the WCA method 

adjusts the weight of a respondent in weighting class c by multiplying 1 / cp̂  (Lohr 

1999). 

 

The post-stratification adjustment (PSA) is used to bring the sample more in line 

with the population, as what was done with the WCA.  However, in this case, no 

demographic information is available on the nonrespondents.  Population information 

obtained from an external source is used to adjust the weights.  For example, Census data 

is often used in national population surveys to calibrate the sample results to population 

numbers.  Post-strata are created based on demographic information collected on the 

questionnaire from the respondents along with information available on the same 

demographic variables from the Census.  For example, age groups can be used to create 

the post-strata.  The number of individuals in the sample may be out of balance with 

proportions of these age groups in the population.  The post-strata are created to make 

weighting adjustments to bring the sample more in line with the population proportions.  

Details on this adjustment are provided in Lohr (1999). 

 

The imputation technique is used to assign or impute values to the values or items 

that are missing.  For example, if the income variable has some missing values, the 



www.manaraa.com

6 
 

 

researcher can replace the missing values by substituting in the mean of the observed 

income (mean imputation).  Another approach substitutes the missing values with 

predicted income values from a regression model of the observed income vs. observed 

covariates.  For interested readers, Lohr (1999) and Heeringa et al. (2010) provide more 

detailed descriptions about the imputation techniques. 

 

David et al. (1983) provide the fundamental assumption for response propensity, 

which is that “the response (or nonresponse) mechanism is ignorable.”  Little (1986) 

develops the response propensity score method to adjust the estimated mean.  He defines 

the response propensity score as the conditional probability of a subject responding to the 

survey, given the observed covariates.  The response propensity scores method can be 

viewed as an alternative to the WCA; it has a model-based element, since the response 

propensity scores are generally estimated by a logistic model on all observed covariates.  

Then the weighting classes (a.k.a subclasses) are formed on the estimated response 

propensity scores.  The majority of researchers currently choose to form equally-divided 

weighting classes or subclasses on the estimated response propensity scores, and to apply 

equal weights (EW) to adjust the nonresponse when estimating the outcome. 

 

1.3 The propensity score methods 
 

To understand propensity score methods, we will provide a general review.  

Cochran (1968) suggests that for an observational study with only one covariate and a 

binary treatment indicator (e.g. treatment vs. control), a five-20%-quantile equal 



www.manaraa.com

7 
 

 

frequency (EF) subclassification method is an efficient procedure to eliminate 90% of the 

bias of the estimated treatment effect induced by this covariate.  However, this procedure 

may not be feasible if there are multiple covariates collected in a study.  Let the total 

number of covariates be p, where p ∈  Ζ+.  If there was a dichotomous subclassification 

(EF with two subclasses) for each covariate, using Cochran’s (1968) approach, 2p 

subclasses are produced.   As p increases, the data may not be able to support the total 

number of 2p subclasses. 

 

For multiple covariates, one can also consider using regression adjustment to 

estimate the treatment effect, but Rubin (1979) questions that the regression estimate may 

not be appropriate if the linear model is incorrect.  Rosenbaum and Rubin (1983) indicate 

that the expectation of the quadratic term of the conditional bias (“expected squared 

bias”) for the regression estimate of the treatment effect increases if the covariate 

variances (or “covariance matrices”) of the treatment and control group are different.  

Further, Rosenbaum and Rubin (1983) define a subject’s propensity score as the 

conditional probability for each subject to receive the treatment assignment given the 

observed covariates.  They provide the theory of the propensity scores method to adjust 

the bias of the estimated treatment effect due to the observed multiple covariates.  In 

Rosenbaum and Rubin (1984), they provide another theorem corresponding to Cochran’s 

(1968) results.  This theorem implies that by using five-20%-quantile subclassification 

groups with equal weights (EF-EW) on the estimated propensity scores reduces 90% of 

the bias of the estimated treatment effect caused by all observed covariates in a 

observational study with binary treatments (e.g., treatment vs. control, participants vs. 
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non-participants).  Rosenbaum (1987) introduces a propensity scores method for post-

stratification adjustment.  If a study has an overwhelmingly larger number of control 

units than treatment units, researchers may want to select a portion of the control units to 

compare with the treatment units to estimate the treatment effect.  Rosenbaum and Rubin 

(1985) develop the propensity scores matching approach to select control units, where 

their estimated propensity scores are similar to treatment units based on certain criteria.  

Rubin and Thomas (1992) describe the propensity scores matching approach using 

discriminant analysis and logistic regression to estimate the propensity scores. 

 

Drake (1993) introduces a simulation approach to evaluate the propensity score 

estimators and the ordinary least square (OLS) estimators by omitting an independent 

covariate and misspecifying a quadratic term.  Dehejia and Wahba (1999, 2002) propose 

to further split EF subclasses until the difference of the means of the propensity scores 

between the dichotomous treatment groups in a split subclass is homogeneous (or 

“balanced” in Imbens 2004) from a two-sample t-test.  Hullsiek and Louis (2002) propose 

“equal variance” (EV) subclassification on the propensity scores, which involves inverse 

variance (IV) weighting of the treatment effect estimator.  Caliendo and Kopeinig (2008) 

provide a recent review for the propensity score methodology, including: matching 

(nearest neighbor, caliper and radius), subclassification (a.k.a. interval matching, 

blocking or stratification) and inverse propensity scores weighting. 
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1.4 Summary of the contribution and organization of the thesis 
 

The objective of this thesis work is to develop a theoretical framework to identify 

situations in which EF or EV approaches might be better in terms of reducing the bias 

and/or variance of the estimator, and to propose a novel approach of forming the 

subclasses with homogeneous propensity scores. 

 

The first contribution of the thesis is to evaluate the equal variance 

subclassification method under model misspecification.  The second contribution is a 

theoretical investigation on propensity score subclassification adjustment estimators to 

identify at what condition the EF-IV estimator has smaller bias than the EF-EW 

estimator, and at what condition the EF-IV estimator has no larger variance than the EV-

IV estimator.  The third contribution is the novel propensity scores balancing 

subclassification approach.  We propose a new approach of subclassification with 

homogeneous or identical propensity scores between treatment subjects and control 

subjects (at least for most of the subclasses).  This approach tends to produce a large 

number of subclasses where the data would allow in order to reduce more bias, which 

also reflects the suggestion by Cochran (1968), Imbens (2004) and Myers and Louis 

(2007). 

 

The organization of the thesis is the following: In Chapter Two, we will provide a 

literature review of the background of propensity score methodology, response 

propensity scores adjustment on survey nonresponse, details of the contribution and 

organization of the thesis.  In Chapter Three, we will provide a simulation study to 
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evaluate the propensity score adjustment estimators, with respect to EF and EV 

subclassification approaches; we will use different weighting methods, such as EW or IV 

weights, of the treatment effect.  In Chapter Four, we will provide the theoretical work of 

the bias, variance and root mean square error (RMSE) of the propensity score 

subclassification adjustment estimators with different weighting methods.  In Chapter 

Five, we propose our novel propensity scores balancing (PSB) subclassification 

approach.  We then simulate a situation with a proportion of control subjects that have 

low estimated propensity scores.  We also provide an evaluation for the PSB approach 

and other propensity score estimators in terms of average bias, variance and 

corresponding RMSE.  In Chapter Six, we will summarize the major findings from our 

simulation results, theory work and our newly proposed PSB subclassification approach 

and discuss future research interests. 
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Chapter 2. LITERATURE REVIEW 
 

There are often respondents and nonrespondents in surveys.  If respondents 

provide different responses as that expected from nonrespondents, then analyzing only 

the completed data will produce biased results.  If the nonresponse mechanism can be 

explained by the observed covariates, the analysis should take into account the observed 

covariates to adjust for nonresponses.  This can be viewed as an analog to observational 

studies that include a treatment group and a control group.  The objective of this thesis is 

to seek an adjustment method using covariates information available in observational 

studies or surveys that encounter nonresponse. To discuss the adjustment for survey 

nonresponse, we will first examine adjustment methods in the context of observational 

studies with a treatment group and a control group.  We will then extend these methods to 

survey nonresponse adjustment.  This chapter reviews the literature on single covariate 

subclassification methods as well as propensity score subclassification methods and their 

applications to survey nonresponse.  In section 2.1, we describe the equal frequency 

subclassification adjustment on a single covariate.  In section 2.2, we discuss the 

adjustment using propensity scores subclassification.  Following this development, 

section 2.3 reviews applications of the propensity scores method, including a survey 

nonresponse adjustment. Section 2.4 reviews the evaluation of the propensity scores 

equal frequency subclassification under model misspecification and the equal variance 

subclassification approach.  Section 2.5 outlines the contribution of this thesis, and 

section 2.6 describes the organization of the thesis. 



www.manaraa.com

12 
 

 

 

2.1 The single covariate quintile subclassification adjustment 
 

In observational studies with a treatment group and a control group, researchers 

are often interested in comparing the means of the outcomes between the treatment group 

and the control group to estimate the treatment effect.  There may be an imbalance in 

those covariates across the treatment group and the control group.  A direct comparison 

of the means of the outcomes between the treatment group and the control group may be 

biased in estimating the treatment effect due to this imbalance.  The effect of the 

covariates cannot be separated from the effect of the treatment on the outcome.  In 

surveys, the distribution of some demographics (e.g. age or education level) may be very 

different between the respondent and nonrespondent groups.  If this imbalance is not 

taken into account, the estimates for the respondents are biased, since these estimates also 

reflect demographic differences. 

 

Cochran (1968) initially examined this problem in observational studies involving 

a treatment group, and a control group and one covariate related to the outcome.  He was 

interested in developing an adjustment to account for the imbalance due to the covariate.  

His solution is described as the single covariate equal frequency (EF) subclassification 

adjustment.  This method equally divides the covariate along the percentiles of its 

empirical distribution based on a predetermined number of subclasses.  The subclasses 

are non-overlapping.  Within each subclass, the distribution of the covariate is relatively 

similar between the treatment group and the control group.  The difference in the means 
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of the outcome between the treatment group and the control group is obtained for each 

subclass.  These subclass-specific means are combined with weights to compute the 

overall estimate of the treatment effect.  A common weighting scheme used in this 

application is the equal weights (EW) approach, in which the weight is the reciprocal of 

the number of subclasses.  Below, a brief description of the single covariate equal 

frequency subclassification adjustment developed by Cochran (1968) is presented. 

 

Notionally, let y0j denote the outcome for subject j in the control group, where j = 

1, 2, …, n0; n0 is the number of subjects from the control group (n0 > 1).  Let y1i denote 

the outcome for subject i in the treatment group, where i = 1, 2, …, n1; n1 is the number 

of subjects from the treatment group (n1 > 1).  Let 
000201  ..., , , nxxx  and 

111211  ..., , , nxxx  

denote the corresponding covariate in the control group and the treatment group, 

respectively.  For now, we assume that both the outcome and covariate are continuous.  

Suppose the covariate relates to the outcome such that, 

 

y1i = α1 + u(x1i) + e1i ,  y0j = α0 + u(x0j) + e0j , 

 

where u is a regression function (e.g., u(x1i) = βx1i, u(x0j) = βx0j, and β is a regression 

coefficient).  Here, α1 and α0 are the true means of the treatment group and the control 

group, respectively, and e1i and e0j are the corresponding zero mean independent random 

error terms of the treatment group and the control group.  The goal is to estimate the 

treatment effect α1 - α0.  The unadjusted means of the outcomes of the treatment group 

and the control group can be obtained by 
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subclass-specific numbers of subjects from the treatment group and the control group, 

respectively; and n1
(c), n0

(c)  > 1.  The subclass-specific bias caused by the covariate is 

then )(-)( )(
0

)(
1

cc uEuE .  Suppose the weight of subclass c is wc, denoting the single 

covariate equal frequency subclassification adjustment. Then, the overall weighted bias 

caused by the covariate is 

∑ )](-)([ )(
0

)(
1

cc

c uEuEw . 

Therefore, the proportion of bias removed by the single covariate subclassification 

adjustment method from the covariate is 

 

)]()(/[)](-)([1 01
)(

0
)(

1 uEuEuEuEw cc

c −−∑ .                                        (2.1) 

 

If using equal weights, then wc = 1/5. 
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To illustrate the influence of the observed covariate, let us look at an example in 

Cochran (1968).  Three studies are conducted in the U.K., Canada, and the U.S. to 

investigate the impact of smoking on patient fatality rates.  Each study involves three 

groups: non-smokers, cigarette smokers and cigar/pipe smokers.  The unadjusted 

estimates from these three studies show that the fatality rates of non-smokers and 

cigarette smokers are similar, while cigar/pipe smokers have higher fatality rates.  Across 

all three studies, the average age of the cigar/pipe smokers is higher than the average age 

of the cigarette smokers and non-smokers.  Obviously, a patient’s age, especially for the 

elderly patients, is also related to a higher fatality rate.  An adjustment to account for the 

covariate (i.e. age) would be advantageous in this example.  Using equal weights, the 

adjusted estimates from all three studies indicate that the fatality rates of cigarette 

smokers are consistently higher than non-smokers.  For cigar/pipe smokers, fatality rates 

show no increase when compared to non-smokers.  It is possible that because of higher 

ages of cigar/pipe smokers, other medical factors (e.g., patient elevated cholesterol 

numbers, chronic complication, etc.) may also contribute to their fatalities.  Thus, 

additional covariates from these studies may be needed to further adjust the fatality rates 

of cigar/pipe smokers. 

 

If using equal weights, equation (2.1) above can be viewed as a function of the 

covariate.  That is, the percentage of bias reduction by using the covariate equal 

frequency subclassification adjustment will depend on the covariate, not on the outcome.  

Therefore, equation (2.1) quantifies how effective the single covariate equal frequency 

subclassification adjustment is in removing the bias introduced by the covariate.  The 
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evaluation of this method was achieved by Cochran’s simulations, where certain 

empirical distributions were assumed for the covariate: Normal, t, Chi-square and Beta.  

The results provided by Cochran (1968) indicate that for observational studies with a 

treatment group, a control group and a single covariate related to the outcome variable, 

using five subclasses with equal weights, the single covariate equal frequency 

subclassification adjustment removes 90% of the bias introduced by this covariate. 

 

For just one covariate, the equal frequency subclassification adjustment works 

well to eliminate the bias induced by the covariate.  However, when considerable 

numbers of covariates are observed in observational studies, this method is impractical to 

implement.  In some cases, there is a drastically increased number of subclasses.  For 

example, Rosenbaum and Rubin (1983) discuss a coronary artery bypass surgery study of 

patients including 74 covariates.  If five EF subclasses for each covariate are selected, 

then a total number of 574 subclasses are needed.  If just two EF subclasses for each 

covariate are selected, the total number of subclasses will be 274.  Under either scenario, 

the method of subclassification adjustment on each covariate would be very difficult to 

implement due to the limited number of subjects in each subclass (i.e. very small sample 

sizes).  Therefore, for observational studies with large numbers of covariates, a method 

incorporating the observed covariates into a univariate measure is desirable.  The 

propensity scores method is developed to deal with this situation. 
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2.2 The propensity scores equal frequency subclassification 

adjustment 
 

In observational studies where many covariates are collected, Rosenbaum and 

Rubin (1983) propose the propensity score method to estimate the treatment effect.  The 

propensity score is defined as the conditional probability of a subject being assigned to 

the treatment group, given the observed covariates.  In a randomized experiment, the 

propensity score of each subject is known to the researcher at the design stage.  For 

example, in a randomized experiment involving an equal number of individuals in both 

the treatment group and the control group, the propensity score is 1/2 for each subject.  In 

an observational study, however, treatment is not randomly assigned to subjects.  

Subsequently, there may be an imbalance in the covariates across the treatment group and 

the control group.  Comparing the outcome means between the treatment group and the 

control group may be confounded by the covariates.  The propensity score summarizes 

the information from all observed covariates into a univariate measurement.  By 

conditioning on the propensity scores, the subjects can be placed into subclasses with 

similar covariate information across the treatment group and the control group.  Thus, the 

treatment effect can be estimated within subclasses, thereby reducing the influence of the 

observed covariates. 

 

For observational studies, another method to account for the covariates when 

estimating the treatment effect is multiple linear regression incorporating covariates.  

Rubin (1979) indicates, however, that the estimates using multiple regression may be 

inappropriate if the linear model is not correct.  Rosenbaum and Rubin (1983) describe a 
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covariate imbalance.  For example, if a model for the mean outcome is not a linear 

function of the covariates, and the covariate variances (“covariance matrices”) between 

the treatment group and the control group are different, then there is a covariate 

imbalance.  Under this condition, they indicate that this covariate imbalance increases the 

expectation of the quadratic term of the conditional bias (“expected squared bias”) of the 

regression estimate of the treatment effect.  When some of the covariates are imbalanced, 

the propensity score method is an option to consider removing the confounding effect 

from the observed covariates to adequately estimate the treatment effect. 

 

To further explain the propensity score method, we provide several definitions.  A 

sample is called “balanced” if the subjects of the treatment group and the control group 

can be subclassified, such that the confounding effects of covariates on the treatment 

effect are removed.  For each subject i, i = 1, 2, …, n, the treatment assignment indicator, 

zi, is defined as the following: let zi = 1 denote that the subject i is in the treatment group, 

and zi = 0 denote that the subject i is in the control group.  Let xi be the vector of 

observed covariates for one subject.  The propensity score, e(xi) of a subject is defined as 

 

e(xi) = Pr{zi = 1 | xi}                                                         (2.2) 

 

As Rosenbaum and Rubin (1983) state, a “balancing score,” b(xi), is a function of 

the covariates, such that the conditional distribution of xi given b(xi) is the same for 

treatment and control subjects.  The influence of the covariates on the treatment effect 

has been removed by subclassifying the subjects based on the balancing score.  This 
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provides the capability to obtain an estimate of the treatment effect without the influence 

of the covariates. 

 

Another definition used when discussing the propensity scores is the “strong 

ignorable treatment assignment” assumption.  When the outcome of interest is 

conditionally independent of the treatment assignment indicator given the observed 

covariates, this assumption is met.  This assumption is the analog to the missing at 

random (MAR) assumption (in Chapter One) in the situation when we discuss surveys 

and nonresponse. 

 

Rosenbaum and Rubin (1983) provide four major theorems to give the theoretical 

foundation for propensity scores adjustment to reduce bias due to observed covariates in 

an observational study.  The first theorem states that, given the propensity score, the 

observed covariates and the treatment assignment are conditionally independent.  The 

imbalance in observed covariates is incorporated into the propensity score as a single 

measurement.  This theorem also implies that if a subclass of subjects or a matched 

treatment-control pair is homogeneous or identical in the propensity scores, then the 

subjects of the treatment group and the control group in this subclass or matched pair will 

have the same distribution of covariates.  Therefore, the imbalance (distributional 

differences) of the covariates between the treatment group and the control group are 

eliminated within this subclass or matched pair.  The second theorem implies that the 

propensity score is a balancing score.  In the third theorem, if the treatment assignment is 
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strongly ignorable given the observed covariates, then the treatment assignment is 

strongly ignorable given the propensity score. 

 

The fourth theorem states that if we assume a strongly ignorable treatment 

assignment, then the difference between the conditional expectation of the outcome given 

the propensity score for the treatment group and the control group equals the expectation 

of the average treatment effect given the propensity score.  That is, under the assumption 

of the strong ignorable treatment assignment, conditioning on the propensity score is 

adequate to provide relatively unbiased (i.e. Cochran’s 90% bias reduction) estimates of 

the treatment effect by pair-matching or subclassifying the propensity scores.  

Subclassification can be implemented by forming subclasses with homogeneous 

propensity scores.  Within each subclass, the treatment effect is estimated by comparing 

the outcomes between the treatment group and the control group.  A graphic display of 

equal frequency subclassification on the propensity scores is presented in Figure 2.1. 



www.manaraa.com

21 
 

 

percentiles:     0.2          0.4           0.6          0.8

Subclass c:   1          2             3             4           5

e(x)

z = 1 (treatment)z = 0 (control)

0 1

EF

 

Figure 2. 1 Equal frequency subclassification on the propensity scores 

 

Recall that Cochran (1968) found that the single covariate subclassification 

adjustment using five subclasses and equal weights reduces 90% of the bias contributed 

by the covariate.  Rosenbaum and Rubin (1984) provide an additional theorem to extend 

Cochran’s results to the observational studies with multiple covariates.  The above 

theorems provide the foundation of the propensity scores adjustment method using pair-

matching or subclassification.  The applications of the propensity scores method will be 

introduced in the next section. 
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2.3 Applications of propensity scores adjustment 
 

2.3.1 Propensity scores matching approach 

 

In observational studies, assume a small number of subjects in the treatment 

group and a large number of subjects in the control group.  In these cases, obtaining the 

outcome of interest for all control subjects may be too expensive (e.g., locating large 

numbers of control subjects may be difficult and measuring their outcome may also be 

very costly).  Rosenbaum and Rubin (1985) describe the matching method for selecting a 

subset of control subjects that are similar to the subjects in the treatment group with 

respect to observed covariates.  The propensity scores matching method matches a 

subject in the treatment group with a subject in the control group who has a similar 

propensity score. 

 

Propensity score matching methods have been widely applied in clinical and 

econometrics studies.  D'Agostino Jr. (1998) examines the efficiency of removing 

covariates imbalance by propensity scores matching method for a clinical study.  In a 

study using matching, Rubin and Thomas (2000) introduce an extension of propensity 

scores matching for a clinical study; the matching method uses both the estimated 

propensity scores and a collection of observed covariates that are closely related 

(“prognostic”) to the outcome of interest.  Similarly, Dehejia and Wahba (2002) illustrate 

propensity score matching methods on a labor program data to estimate the impact of the 

training. 
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2.3.2 Equal frequency subclassification and equal weights approach 

 

The propensity scores matching approach selects a subset of the subjects in the 

control group to compare with the subjects in the treatment group.  Thus, matching uses a 

reduced number of samples, which costs less than measuring all control subjects.  

However, in some studies, researchers may be interested in using the full sample.  Under 

these circumstances, the propensity scores subclassification method is an option to 

consider.  The propensity scores subclassification is also known as interval matching, 

blocking or stratification (Caliendo and Kopeinig 2008). 

 

The propensity scores subclassification method is a nonparametric procedure, 

which does not depend on a specified regression function relating the outcome to 

covariates.  Rubin (1997) states that this feature of the propensity scores subclassification 

is an advantage in estimating the treatment effect compared to multiple regression, 

because the regression estimate may not be reliable if its model specification is incorrect.  

One type of the propensity scores subclassification is Rosenbaum and Rubin’s (1983, 

1984) propensity scores equal frequency quintile subclassification method.  This can be 

described as the following (D'Agostino Jr. 1998): 

(1) Estimate the propensity scores by a logistic regression model of the treatment 

assignment indicator on the observed covariates; 

(2) Sort the estimated propensity scores in an ascending order; 
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(3) Use quintiles of the estimated propensity scores as boundaries to form five 

subclasses. 

If equal weights are used, then the overall treatment effect estimate is equal to the 

average of the mean differences of the outcome between the treatment and the control 

group among the five subclasses.  Let c index the subclasses, and assume the subclass-

specific means of the outcome are )(
1

cy  for the treatment group and )(
0

cy  for the control 

group, then the estimated treatment effect is ∑
=

−
5

1

)(
0

)(
1 ))(5/1(

c

cc yy . 

 

The first theorem of the propensity scores method in Rosenbaum and Rubin 

(1983) states that, given the propensity scores, the observed covariates and the treatment 

assignment are conditionally independent.  This implies that if a subclass of subjects is 

“homogeneous” in the propensity scores, then the subjects of the treatment group and the 

control group in this subclass will have the same distribution of covariates.  Therefore, 

the degree of imbalance of the covariates between the treatment group and the control 

group can be evaluated by testing the mean difference of the propensity scores between 

the treatment group and the control group within each subclass.  Dehejia and Wahba 

(1999, 2002) apply a two-sample t-test to assess whether the mean estimated propensity 

scores within each subclass are “identical” (or “balanced” in Imbens 2004) in order to 

create the minimal set of identical subclasses.  This leads to further splitting the 

propensity score subclasses.  The splitting procedure can be described in four steps: 

(1) Form five equal frequency subclasses on the estimated propensity scores; 
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(2) Apply a two-sample t-test to check whether the means of the estimated 

propensity scores between the treatment group and the control group are 

identical within each subclass; 

(3) If the t-test is statistically significant, this indicates the estimated propensity 

scores in that subclass are not balanced, then the EF subclasses will be further 

equally split; 

(4) Repeat steps (2) and (3) until the t-tests are not statistically significant for all 

further split EF subclasses (additional details of this procedure are provided in 

Dehejia and Wahba 1999, 2002). 

 

Propensity score equal frequency subclassification equal weights (EF-EW) 

methods have been broadly implemented in various studies.  Little and Rubin (2000) 

discuss the applications of the propensity score EF-EW approach in clinical trials and 

epidemiology.  In a study applying equal frequency subclassification, Aakvik (2001) uses 

12 EF subclasses to evaluate a Norwegian labor training program. 

 

2.3.3 Propensity scores equal frequency subclassification adjustment for 

survey nonresponse bias 

 

We can apply the propensity score methodology to survey situations.  Most 

surveys exhibit nonresponse, since not every selected subject responds to complete a 

questionnaire request.  Instead of a treatment group and a control group that we discussed 

earlier for observational studies, we have a respondent group and a nonrespondent group.  
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David et al. (1983) provide the fundamental assumption for response propensity, which is 

that “the response (or nonresponse) mechanism is ignorable.”  This assumption is 

analogous to the strongly ignorable treatment assignment assumption of the propensity 

scores method in observational studies with a treatment group and a control group.  

Ignorable means that the response mechanism related to the outcome of interest can be 

explained by the observed covariates.  For example, in a public opinion survey, the 

response mechanism has nothing to do with the opinion collected, although, it is 

associated with a known covariate, such as age.   

 

  The response propensity score is defined as the conditional probability of a 

subject responding to (or participating in) the survey, given the observed covariates.  The 

subclassification can be applied on the estimated response propensity scores as in 

observational studies.  When some demographics (e.g., age, income) are imbalanced 

between the respondent group and the nonrespondent group, the propensity score 

subclassification method has the advantage of reducing the nonresponse bias but not 

requiring subclassification on all covariates, as discussed in Section 2.1.  It had been 

suggested that missing at random (MAR) is the mechanism of nonresponse often found in 

situations when missing data occurs (Bjørnstad 2007 and Chambers 2007).  The strong 

ignorable treatment assignment assumption of the propensity score method is also an 

analog to the MAR assumption.  This discussion provides some background of the 

response propensity scores subclassification adjustment estimator. 
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The response propensity scores method has been developed and utilized by 

several researchers.  Little (1986) introduces a response propensity score method to 

adjust the estimated mean.  Building on Little’s research, the response propensity has 

been applied to a variety of studies with survey nonresponse.  In these cases, propensity 

scores were used to adjust the means for nonresponse.  Eltinge and Yansaneh (1997) use 

propensity score equal frequency subclasses to form nonresponse adjustment classes 

(cells).  Another study using the response propensity scores, Smith et al. (2000) estimate 

the vaccination rates for the U.S.  Carlson and Williams (2001) apply the response 

propensity score method to a household survey, while Diaz-Tena et al. (2002) use this 

method on a physician survey data.  Vartivarian and Little (2003) introduce “joint 

classification” based on the response propensity scores and the predicted means from 

regressing the respondents’ outcome on the covariates to improve efficiency, and  to 

reduce the nonresponse bias.  Furthermore, Harrod and Lesser (2007) propose a new 

response propensity score model to deal with the situation when a subsample of survey 

nonrespondents is collected. 

 

2.4 Propensity scores adjustment under model 

misspecification; equal variance subclassification 
 

Drake (1993) provides a simulation study to evaluate the impact of covariate 

omission and quadratic term misspecification on the propensity scores equal frequency 

subclassification adjustment under a linear regression model.  The simulation results 

indicate that for a covariate omission in the propensity scores model, the estimated 

propensity scores equal frequency subclassification induces a similar bias as the ordinary 
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least square (OLS) estimator.  For the quadratic term misspecification in the propensity 

scores model, the estimated propensity scores equal frequency subclassification estimator 

has less bias than the OLS estimator. 

 

Often under propensity scores equal frequency subclassification, the lower 

subclass tends to contain a fewer number of treatment subjects, and the upper subclass 

tends to contain a fewer number of control subjects.  As a consequence, the within 

subclass treatment effect estimates may have high variation.  Even though some 

subclasses may have more variation, equal weights are generally assigned to subclasses 

in overall treatment effect estimation.  Hullsiek and Louis (2002) introduce the 

propensity scores equal variance (EV) subclassification method to equalize the within 

subclass variances.  Their approach applies an iteration procedure to subclassify the 

propensity scores based on the variances of the within subclass treatment effect estimator, 

which are approximately equivalent (“equal variance”).  The variances of the within 

subclass treatment effect are estimated by a regression model of the outcome on the 

covariates within each subclass. However, after the equal variance subclasses have been 

formed, the within subclass treatment effect is estimated by a regression model of the 

outcome on the treatment assignment indicator only.  Since the inverses of the equalized 

variances (IV) of the within subclass treatment effects are also used as the weights for the 

overall treatment effect estimate, the weights are theoretically equal among subclasses.  

They suggest that using the maximum number of propensity score subclasses, where data 

would allow, would enable the propensity scores subclassification method to remove 
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more bias.  The trade-off would be a high variation of the within subclass treatment effect 

estimate. 

 

Myers and Louis (2007) indicate that the propensity scores equal variance 

subclass boundaries could be relatively far from the equal frequency subclass boundaries.  

In order to equalize the variances among subclasses, the lower end subclasses may need 

to be wider.  Although a wider subclass may achieve smaller variance, it may produce 

larger bias.  Under equal frequency subclassification and under equal variance 

subclassification, Myers and Louis (2007) determine the number of subclasses that 

produce the smallest mean square error (MSE) of the treatment effect estimator.  They 

conclude that under a simple linear model, the propensity scores equal frequency 

subclassification has an advantage over the equal variance approach.  They also suggest 

increasing the number of subclasses to remove more bias until the overall treatment effect 

estimator becomes similar or until the overall variance of the estimator substantially 

increases. 

 

2.5 Contribution of the thesis 
 

2.5.1 Equal variance subclassification method under model 

misspecification 

 

Hullsiek and Louis (2002) did not evaluate how the equal variance 

subclassification approach would perform under propensity scores model 
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misspecification as implemented in Drake (1993). No follow-up publications on this topic 

have yet been found in the literature.  Using a simulation, we will assess the equal 

variance subclassification method under model misspecification.  Additionally, Myers 

and Louis (2010) state that the subclassification estimator with inverse variance 

weighting generally underestimates the variance of the overall estimated treatment effect.  

We will investigate the variance and the bias of the treatment effect estimate using 

inverse variance weights for the equal frequency subclassification and the equal variance 

subclassification, under both correctly specified models and misspecified models. 

 

2.5.2 Theoretical investigation on propensity scores subclassification 

adjustment estimator 

 

 We have an interest in evaluating the use of propensity score methodology on 

variance and bias.  The propensity scores equal frequency subclassification approach may 

produce treatment effect estimates with a high variation in some subclasses.  This method 

uses equal weights in the overall treatment effect estimation.  Presently, under equal 

frequency (EF) subclassification, two weighting schemes, equal weights and inverse 

variance weights, can be applied; though, no evaluation has been provided on which 

weighting scheme would be more efficient to remove the bias of the covariates.  For 

instance, near the lower end and the upper end quintile subclasses of the propensity 

scores, the sample size of the treatment group or the control group tends to be small.  

Thus, the variances of the near-end subclasses may be higher than those of other 

subclasses.  We will show that under equal frequency subclassification, the inverse 
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variance (EF-IV) weighting estimator has smaller bias than the equal weights (EF-EW) 

estimator under certain condition.  We will also show that under equal frequency (EF) 

subclassification, the EF-IV estimator always has a variance no larger than the EF-EW 

estimator.  We will investigate the equal variance (EV) subclassification approach with 

an inverse variance weighting scheme. 

 

2.5.3 New approach to propensity scores subclassification 

 

Creating propensity scores for observational studies with treatment and control 

subjects has been challenging in certain conditions.  Researchers exclude (1) the control 

subjects whose estimated propensity scores are lower than the minimum of the estimated 

propensity scores from the treatment group, and (2) the treatment subjects whose 

estimated propensity scores are higher than the maximum of the estimated propensity 

scores from the control group (Dehejia and Wahba 1999).  For example, Stürmer et al. 

(2006) provide a case where the lowest and highest propensity scores are deleted when 

only one of the two groups (i.e., either treatment or control) is present.  After the 

exclusion, only a subset of subjects are used for analysis, Figure 2.2 (Stürmer et al. 2006). 

This exclusion is also known as propensity scores trimming (Stürmer et al. 2007). 
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Figure 2. 2 Propensity score distributions of the treatment (exposed to the 

treatment or risk factor) subjects and control (unexposed) subjects 

 

In surveys, we adopt propensity scores to adjust for nonresponse.  The estimated 

propensity scores may occur at the lower end of the distribution; younger subjects refuse 

to participate more often than older subjects.  This may result in some younger subjects 

being trimmed from the analysis.  However, some researchers may be interested in 

analyzing the entire sample.  Therefore, an alternative propensity scores subclassification 

method is desired to deal with this situation. 

 

a b 
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We propose a new approach of subclassification by attempting to balance the 

propensity scores for most subclasses.  Our method will form a subclass that has 

homogeneous estimated propensity scores in the treatment group and the control group.  

Thus, the distribution of the covariates within each subclass is identical.  This approach 

tends to create a large number of subclasses to reduce more bias as suggested by Cochran 

(1968), Imbens (2004) and Myers and Louis (2007). 

 

2.6 Organization of the thesis 
 

In Chapter Three, we will provide a simulation study to evaluate the propensity 

scores adjustment estimator of the treatment effect with respect to equal frequency and 

equal variance subclassification methods by using two weighting schemes: equal weights 

or inverse variance weights.  We will also assess propensity score adjustment estimators 

under model misspecification in this simulation. 

 

In Chapter Four, we will derive bias, variance and the root mean square error 

(RMSE) of the propensity scores subclassification adjustment estimator assuming equal 

weights and inverse variance weights.  Our theoretical development will assume the 

outcome is generated by a linear regression model.  We then develop lemmas, theorems 

and corresponding corollaries.  We will extend the theoretical results to the multiple 

covariates situation. 
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In Chapter Five, we propose a novel propensity scores balancing 

subclassification, the PSB method.  We implement a simulation to compare the results of 

the PSB estimators with other estimators including OLS, EF-EW, EF-IV and EV-IV.  We 

also simulate a propensity score trimming situation.  We will assume there is no 

treatment subject data near the lower end of the estimated propensity scores.  We will 

examine our PSB method, and the EF and EV approaches under this situation. 

 

In Chapter Six, we summarize the major findings from our simulation results, 

theory development and our proposed PSB subclassification approach.  We also  give 

proposals for future research work. 
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Chapter 3. SIMULATION STUDIES OF PROPENSITY 

SCORES METHOD 
 

In this chapter, we examine the performance of several treatment effect estimators 

in terms of bias and root mean square error (RMSE) under different types of model 

misspecification.  Specifically, we examine the regression or ordinary least square (OLS) 

estimator and three propensity score estimators (EF-EW, EF-IV and EV-IV).  The 

differences among the propensity score estimators consist of two elements.  One element 

is the forming of the propensity score subclasses, either by forming equal frequency (EF) 

subclasses or equal variance (EV) subclasses.  The other element is the weighting 

schemes applied to combine the within subclass estimators to compute the overall 

estimate for the treatment effect, either by applying equal weights (EW) or inverse 

variance (IV) weights.  We use the setting of an observational study with a treatment 

group and a control group for the simulations.  Both the simulation model and the types 

of the model misspecification are adopted from Drake (1993).   

 

For both the outcome variable and the treatment indicator variable, the 

independent covariates are generated as predictors for two scenarios.  In the first 

scenario, the treatment indicator is simulated as an independent Bernoulli random 

variable using a logistic model involving two independent covariates.  The outcome is 

simulated using a regression model having two independent covariates in addition to the 

treatment indicator.  In the second scenario, the treatment indicator is simulated as an 

independent Bernoulli random variable using a logistic model involving a single 
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covariate and its squared term.  The outcome is simulated using a regression model that 

includes the treatment indicator, a single covariate and its squared term. 

 

For the first scenario, we will obtain the OLS estimator and propensity score 

estimators under correctly specified models and misspecified models.  Under a correctly 

specified model, the OLS estimator is obtained by fitting the regression model with two 

independent covariates.  For the propensity score estimators, the correct specification 

comes from also fitting the model of the propensity scores with two independent 

covariates.  Under a misspecified model, the OLS estimator model misspecification 

involves fitting the regression model by excluding one of the two independent covariates.  

Likewise, for the propensity score estimators, the misspecification comes from fitting the 

model of the propensity scores without one of the two independent covariates.  

 

Recall that the outcome was generated from a regression model including a 

quadratic term.  In this second scenario, under the misspecified model the OLS estimator 

and propensity score estimators are obtained from fitting the model through the exclusion 

of the squared term.  Table 3.1 provides a summary of simulation models and treatment 

effect estimators.  In Hullsiek and Louis (2002), no assessment is provided regarding the 

performance of the EV subclassification approach under the types of model 

misspecification as suggested by Drake (1993).  We have found no follow-up publication 

on this performance topic in the recent literature for EV-IV estimator under model 

misspecification. 
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Table 3. 1 Fitted models and treatment effect estimators 

Model Treatment effect estimators 

 Regression method Propensity scores method 

OLS (ordinary least square) EF-EW EF-IV EV-IV 

Correct Specification Regression model has two predictors Propensity scores model has two predictors 

Misspecification Regression model has one predictor Propensity scores model has one predictor 

 

In the first section below, we will introduce how data are simulated under the two 

scenarios.  In the second section, we will describe the estimation of the regression model 

and the propensity scores model.  The propensity score subclassification methods are 

described in the third section.  In the fourth section, we introduce how the OLS estimator 

and the propensity scores estimators are obtained.  The fifth section presents the results of 

the simulations.  In Appendix Section A3.1, we provide the acronyms, notation tables and 

a flow chart diagram for each step in the simulation procedure. 

 

3.1 Simulating data 
 

In this section, we implement the simulation by generating the treatment indicator 

and outcome variables.  The data are simulated in two scenarios.  One scenario involves 

two independent covariates; the other scenario involves a single covariate and its squared 

term. 
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3.1.1 Scenario involving two independent covariates (x1, x2) 

 

Define two independent covariates, x11, …, x1n ~ iid. N(0, 1), and independently, 

x21, …, x2n ~ iid. N(0, 1).  In the first scenario, we simulate the treatment indicator values 

(zi) as independent Bernoulli random variables under a logistic model: 

 

zi  | x1i, x2i ~ Bernoulli(πi) 

πi = Pr(zi = 1 | x1i, x2i) = {1 + exp[-(γ0 + γ1x1i + γ2x2i)]}
-1                       (3.1) 

 

We generate the outcome variable using the model: 

 

yi = β0 + β1x1i + β2x2i + δzi + ei                                            (3.2) 

 

where e1, …, en ~ iid. N(0, 1) with e ╨ (x1, x2 , z), given e = (e1, …, en), x1 = (x11, …, x1n), 

x2 = (x21, …, x2n), z = (z1, …, zn) and ╨ denotes independence.  For detailed information, 

see Appendix A3.1, Table A3.2. 

 

3.1.2 Scenario involving a single covariate and its squared term (x, x
2
) 

 

Denote a single covariate, x1, …, xn ~ iid. N(0, 1).  We simulate the treatment 

indicator values as independent Bernoulli random variables under a logistic model using 

xi and its square: 

 

zi  | xi ~ Bernoulli(πi) 
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πi = Pr(zi = 1 | xi) = {1 + exp[-(γ0 + γ1xi + γ2xi
2)]}-1                            (3.3) 

 

We use a linear regression model with a single covariate, xi, and its quadratic term 

to generate the outcome variable: 

 

yi = β0 + β1xi + β2xi
2 + δzi + ei                                              (3.4) 

 

The πi denoted in equation (3.1) or equation (3.3) is the true propensity score for 

subject i.  In observational studies, πi is unknown.  The true propensity scores are used to 

simulate the treatment indicator variable under both scenarios.  We also assume either 

equation (3.2) or equation (3.4) to be the true outcome models. 

 

We use the parameters provided by Drake (1993), where β0 = 1, β1 = 1, δ = (1, 3), 

β2 = (1, 2, 3); γ0 = 0, γ1 = 0.4, γ2 = (0.4, 0.7, 1.1).  At each combination, 1000 random 

samples are simulated.  Each sample consists of 1000 randomly generated observations. 

 

3.2 Estimation of regression and propensity scores models 
 

Under each of the two scenarios described in Section 3.1, we will fit the 

regression model to obtain the OLS estimator of the treatment effect.  We will also fit the 

logistic regression model to obtain the propensity score estimators of the treatment effect.  

For both the regression model and the propensity score models, the correct specification 

of the model implies no omission for one of the two independent covariates under the 
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first scenario.  The misspecified model includes a covariate omission under the first 

scenario or a quadratic term omission under the second scenario.  Table 3.2 compares the 

models used to simulate and fit both the outcome models and propensity score models 

(subscript i is ignored for simplicity). 

 

Table 3. 2 Comparison between simulating and fitting the outcome and propensity 

score models 

Covariates OLS estimator 

(x1, x2) True propensity scores: 

π = {1 + exp[-(γ0 + γ1x1 + γ2x2)]}
-1 

Outcome model: 

(a) y = β0 + β1x1 + β2x2 + δz + e 

(b) y = β0 + β1x1 + δz + e 

Propensity scores estimators (EF-EW, EF-IV, EV-IV) 

Propensity scores model: 

(a) e(x) = {1 + exp[-(γ0 + γ1x1 + γ2x2)]}
-1 

(b) e(x) = {1 + exp[-(γ0 + γ1x1)]}
-1 

True outcome: 

y = β0 + β1x1 + β2x2 + δz + e 

(x, x2) OLS estimator 

True propensity scores: 

π = {1 + exp[-(γ0 + γ1x + γ2x
2)]}-1 

Outcome model: 

(b) y = β0 + β1x + δz + e 

Propensity scores estimators (EF-EW, EF-IV, EV-IV) 

Propensity scores model: 

 (b) e(x) = {1 + exp[-(γ0 + γ1x)]}-1 

True outcome: 

y = β0 + β1x + β2x
2 + δz + e 

Note: (a) - correctly specified regression or propensity score models, 

(b) - misspecified regression or propensity score models. 
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3.3 Propensity score subclassification 
 

The propensity scores estimation approach produces the estimated propensity 

scores by logistic regression (either with a correctly specified propensity scores model or 

with the misspecified propensity scores model described in Table 3.2).  The estimated 

propensity scores are then sorted in an ascending order before applying subclassification.  

The number of propensity score subclasses is set at five.  There are two methods used 

when forming propensity scores subclasses: equal frequency (EF) and equal variance 

(EV).  The EF and EV subclassification procedures are described next. 

 

The EF subclassification uses quintiles of the estimated propensity scores as 

boundaries to form five adjacent subclasses (details are in Chapter Two).  We implement 

an iterative procedure to apply the EV subclassification provided by Hullsiek and Louis 

(2002).  The EV subclassification starts with five EF subclasses on the estimated 

propensity scores.  Within each EF subclass, this procedure applies a regression model of 

the outcome variable on the covariates to estimate the variance of the within subclass 

treatment effect (regression) estimator.  Then, the subclass boundaries are adjusted to 

approximately equalize the estimated variances of the within subclass treatment effect 

estimators among subclasses.  For extra information, see Chapter Two and Appendix-

Figure A3.2. 
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In some cases, the EV subclassification procedure does not produce a result.  This 

may be attributed to outliers creating wide subclasses resulting in too few observations 

remaining to form five subclasses.  Thus, less than five EV subclasses are created in this 

situation.  Figure A3.4 in the Appendix illustrates a situation where EV subclassification 

only produces three subclasses. 

 

3.4 Treatment effect estimates 
 

After forming the propensity score subclasses, the subclass-specific treatment 

effect estimator and its estimated variance are obtained within each subclass in order to 

compute the weighted (overall) propensity score treatment effect estimators.  For each of 

the two scenarios described in Section 3.1, we will obtain the OLS estimator and 

propensity score estimators for models under correct specification or misspecifications. 

 

3.4.1 OLS estimator and propensity score estimators 

 

In the case of the OLS estimator for the treatment effect δ, δ̂  is obtained from the 

regression models described in Table 3.2.  For the propensity score estimators, we first 

obtain the estimated treatment effect and its estimated variance within each subclass.  The 

subclass-specific treatment effect within subclass c is estimated by, 
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The estimated treatment effect within subclass c in equation (3.5) can also be 

obtained by fitting the regression model for subclass c data only: 

 

yi
(c) = β0

(c) + δczi
(c)  + ei

(c)                                                (3.6) 

 

Hullsiek and Louis (2002) use the same regression model to obtain cδ̂  and its estimated 

variance, cV̂ .  Using EV subclassification, the estimated variances, cV̂ , which are 

obtained by fitting equation (3.6), may not necessarily be equal among subclasses. 

 

The estimated variance for cδ̂  is, 
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The propensity scores estimator of the overall treatment effect is a weighted 

estimate, 
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If equal weights are assumed, wc
EW = 1/5.  If inverse variance weights are 

assumed, then 

 

∑
=

=
5

1

ˆ/1

ˆ/1

c

c

cIV

c

V

V
w                                                           (3.9) 

Additional details are provided in the Appendix table A3.2. 

 

3.4.2 Measuring the performance of treatment effect estimates 

 

We generated simulations to assess the performance of the treatment effect 

estimators.  We created 1000 simulated samples, each with 1000 random observations.   

Among those 1000 simulated samples, we obtained δ  = mean(
~
δ̂ ), where 

)ˆ ..., ,ˆ ,ˆ(ˆ )1000()2()1(

~
δδδδ = .  We computed the percentage relative bias of the mean 

(PRMB).  We repeated this for a range of parameter values in the tables shown in Section 

3.5.  In addition, we computed the percentage relative bias of the median (RPBM) of δ̂  

as shown by Drake (1993), the percentage relative standard deviation (PRSD) and 

percentage relative RMSE (PRRMSE).  The percentage relative measure formulas are 

summarized in the Appendix Table A3.3, and the true value of the parameters are in 

Appendix Table A3.4. 
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3.5 Simulation results 
 

The performance of the treatment effect estimators are evaluated in three 

subsections.  In the first subsection, we discuss obtaining the OLS estimator and 

propensity score estimators under the correctly specified models.  In the second 

subsection, we obtain estimators using misspecified models, omitting an independent 

covariate for estimating propensity scores and fitting the regression model.  In the third 

subsection, we use the quadratic term misspecification for estimating propensity scores 

and fitting the regression model. In each subsection, the PRMB are obtained for the 

treatment effect estimators. 
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3.5.1 Correctly specified model involving covariates (x1, x2) 

 

Table 3.5.1. 1 PRMB for the OLS and three propensity score estimators 

using correctly specified propensity score models and correctly specified regression 

models for covariates (x1, x2) 

Parameters 
PRMB of 

~
δ̂  

δ β2 γ2 OLS EF-EW EF-IV EV-IV 

1 1 0.4 0.1461 7.9362 6.6079 7.2425 

    0.7 -0.0872 9.9998 8.1127 9.3759 

    1.1 -0.2448 12.3790 9.4942 12.1327 

  2 0.4 0.2306 11.7691 9.4455 10.1228 

    0.7 0.3096 16.7542 12.2626 13.7877 

    1.1 0.2194 21.7132 15.2894 18.2459 

  3 0.4 -0.0923 15.1893 12.0489 12.9778 

    0.7 -0.0476 23.0067 15.7371 17.3590 

    1.1 0.1624 31.1385 19.5637 22.3264 

3 1 0.4 0.0887 2.6308 2.2026 2.4083 

    0.7 0.0633 3.4089 2.7778 3.2000 

    1.1 0.0989 4.3244 3.3734 4.2355 

  2 0.4 0.0028 3.8369 3.0805 3.3032 

    0.7 0.0386 5.5163 4.0365 4.4723 

    1.1 0.1338 7.3883 5.2574 6.2693 

  3 0.4 0.0682 5.2261 4.2395 4.6025 

    0.7 0.0190 7.6604 5.2674 5.7456 

    1.1 0.0108 10.3996 6.5743 7.4332 

 

The results in Table 3.5.1.1 indicate that when using correctly specified 

propensity scores, the PRMB of all propensity score estimators (EF-EW, EF-IV and EV-
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IV) increase as γ2 (i.e. the influence of x2 on the propensity scores) increases.  This 

pattern is consistent for each level of β2 (i.e. the influence of x2 on the outcome).  All 

propensity score estimators produce positive biases.  The PRMB of all propensity score 

estimators at δ=3 are smaller than they are at δ=1.  This is because the PRMB is 

computed by 100×[(δ  - δ)/δ]%, so at δ=3, the denominator increases by a factor of three 

as compared to when δ=1.  Among propensity score estimators, the EF-IV has a lower 

PRMB than the other two propensity score estimators, while EV-IV has a lower PRMB 

than EF-EW.  Given a predetermined p-value level, for each combination of δ, β2 and γ2 

values, a paired t-test can be performed to evaluate whether there is a significant 

difference of mean biases between EF-IV and EV-IV.  A similar test can also be applied 

to compare mean biases between EV-IV and EF-EW.  As we expected, OLS has the 

lowest PRMB (around zero) among all estimators, since the estimation model is correctly 

specified. 
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3.5.2 Misspecified model with a covariate omission (excluding x2) 

 

Table 3.5.2. 1 PRMB for the OLS and three propensity score estimators 

using misspecified propensity score models and misspecified regression models 

Parameters 
PRMB of 

~
δ̂  

δ β2 γ2 OLS EF-EW EF-IV EV-IV 

1 1 0.4 38.8223 42.5489 42.2839 42.5400 

    0.7 63.2160 66.7444 66.5470 66.6874 

    1.1 88.3444 91.2998 91.0594 91.1867 

  2 0.4 77.3982 81.0031 80.8393 81.0293 

    0.7 126.6759 130.1814 130.0417 130.1572 

    1.1 176.4260 179.2282 179.1568 179.2922 

  3 0.4 115.9654 119.3896 119.3800 119.5767 

    0.7 189.7551 192.7523 192.7413 192.8746 

    1.1 265.6911 268.3094 268.2216 268.4400 

3 1 0.4 12.9411 14.1880 14.1061 14.1795 

    0.7 21.1205 22.2899 22.2132 22.2739 

    1.1 29.6657 30.6738 30.6110 30.6456 

  2 0.4 25.8473 27.0040 26.9865 27.0471 

    0.7 42.1397 43.2108 43.1476 43.2044 

    1.1 59.0174 59.9629 59.9147 59.9557 

  3 0.4 38.7916 39.9949 39.9302 39.9756 

    0.7 63.0146 64.0501 64.0070 64.0514 

    1.1 88.5442 89.4056 89.3705 89.3974 

 

The results in Table 3.5.2.1 indicate that for a misspecified propensity scores with 

a covariate omission, the PRMB of all propensity score estimators increase substantially 

as γ2 increases.  This pattern is the same for all propensity score estimators at each level 



www.manaraa.com

49 
 

 

of β2.  The misspecified OLS estimator, which regresses only on covariate x1, follows the 

same pattern.  As γ2 and β2 increase, the PRMB of all estimators increase substantially.   

 

The PRMB of all estimators at δ=3 are smaller than they are at δ=1.  This is 

because the PRMB is computed by 100×[(δ  - δ)/δ]%, so at δ=3, the denominator 

increases by a factor of three as compared to when δ=1.  Overall, none of the estimators 

perform well in terms of PRMB when an independent covariate is omitted from the 

propensity scores model and from the regression model.  This implies that under this 

condition, researchers should not use these estimators in the analysis.  This is not 

surprising, because the omitted covariate is the one used in both a regression model to 

generate the outcome and a logistic model to generate the propensity scores.  These 

simulation results suggest that researchers should estimate the propensity scores based on 

all available covariate information to increase accuracy of the analysis.  Also, the 

propensity score model specification should include all observed covariates. 
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3.5.3 Model with a quadratic term misspecification (omitting x
2
) 

 

Table 3.5.3. 1 PRMB for the OLS and three propensity score estimators 

using misspecified propensity score models and misspecified regression models 

Parameters 
PRMB of 

~
δ̂  

δ β2 γ2 OLS EF-EW EF-IV EV-IV 

1 1 0.4 55.0676 30.9356 13.6264 16.5840 

    0.7 76.1795 39.0702 17.9736 24.7352 

    1.1 89.7706 44.4252 19.5753 31.4377 

  2 0.4 110.9671 59.5532 12.6512 18.1618 

    0.7 151.6400 76.6421 18.7634 29.5091 

    1.1 179.9240 88.7122 23.9111 42.8565 

  3 0.4 166.6882 89.2934 11.8818 21.0997 

    0.7 229.9696 115.8887 18.1795 34.9952 

    1.1 269.3079 131.5643 23.8583 51.4120 

3 1 0.4 18.5396 10.4479 4.6598 5.6252 

    0.7 25.4047 12.9898 6.1071 8.2665 

    1.1 29.8641 14.8887 6.6913 10.6205 

  2 0.4 36.7871 19.7313 4.2933 6.2256 

    0.7 51.0099 25.8933 6.3438 10.0236 

    1.1 59.8128 29.5061 8.0629 14.2787 

  3 0.4 55.6600 29.6158 3.8182 7.0717 

    0.7 76.7866 38.7396 5.8827 11.7854 

    1.1 89.6845 43.9825 7.8445 17.0990 

 

The results in Table 3.5.3.1 indicate that under quadratic term misspecification, 

the PRMB of all propensity score estimators increase as γ2 increases.  This pattern is the 

same for all propensity score estimators at each level of β2.  The misspecified OLS 
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estimator, which omits a quadratic term, follows the same pattern.  However, the EF-IV 

has the lowest PRMB of all estimators in this simulation, while the OLS estimator has the 

highest PRMB.  These results show that as β2 increases, the PRMB of the OLS, EF-EW 

and EV-IV estimators increase.  However, the results obtained from the EF-IV estimator 

do not follow the same pattern.  As in Section 3.5.1, given a predetermined p-value level, 

for each combination of δ, β2 and γ2 values, paired t-tests can be applied to compare 

differences in mean biases between EV-IV and EF-EW, and between EV-IV and EF-EW.  

The PRMB of all estimators at δ=3 are smaller than they are at δ=1.  This is not 

surprising, since the PRMB is computed by 100×[(δ  - δ)/δ]%, so at δ=3, the 

denominator increases by a factor of three as compared to when δ=1.   

 

3.5.4 Summary of simulation 

 

In the investigation of different treatment effect estimators, we found that under 

correctly specified propensity score models, the EF-IV estimator has the lowest PRMB 

and PRRMSE compared to other propensity score estimators across the range of 

parameters investigated.  We also discovered that under the quadratic term 

misspecification, the EF-IV estimator has the lowest PRMB, PRSD and PRRMSE among 

all estimators including the OLS estimator (see Appendix A3.5.1, A3.5.2 and A3.5.3).  

The simulation results are summarized below. 

• For propensity score estimators: the PRMB and the PRRMSE generally increase 

as the influence of the second covariate on the propensity scores (γ2) increases.  
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As the influence of the second covariate on the outcome variable (β2) increases, 

the PRMB and the PRRMSE often increases. 

• Under a correctly specified propensity score models and regression models using 

two independent covariates: 

� Among propensity score estimators, EF-IV has the lowest PRMB, PRSD 

and PRRMSE. 

� OLS has lower PRMB, PRSD and PRRMSE than the propensity score 

estimators.  This is expected since the estimating model is correctly 

specified. 

• Under the misspecified models (e.g., omitting an independent covariate): the 

performance of the OLS is very similar to the performance of propensity score 

estimators.  All estimators perform poorly in terms of PRMB, PRSD and 

PRRMSE. 

• Under the misspecified models (e.g., excluding a quadratic term): EF-IV provides 

the lowest PRMB, PRSD and PRRMSE.  This suggests that it has the best 

performance among all estimators in this simulation.  EV-IV has a lower PRMB, 

PRSD and PRRMSE than EF-EW.  OLS has the highest PRMB, PRSD and 

PRRMSE when compared to the propensity scores estimators. 

 

In the next chapter, we develop a theoretical derivation to specify under what 

conditions a lower weighted (overall) bias or variance of the estimator would be obtained 

using either EW or IV weights. 
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Chapter 4. THEORETICAL INVESTIGATION OF 

PROPENSITY SCORE ESTIMATORS 
 

In this chapter, we develop a theoretical framework to compare different 

propensity score subclassification adjustment estimators (EF-EW, EF-IV and EV-IV).  In 

this framework, we find the following: 

1) Under the EF subclassification adjustment, if higher variation occurs with 

larger bias for within subclass treatment effect estimates, then the overall bias 

of the IV weighting estimator is smaller than that of the EW estimator. 

2) The EF-IV estimator always has no larger variance than the EF-EW estimator. 

3) If the variance of the treatment effect estimator within subclass in the EV 

subclassification is larger than the harmonic mean of the variances of the EF 

within subclass treatment effect estimators, then the EF-IV estimator has a 

lower variance than the EV-IV estimator. 

 

The setting of our theoretical framework is an observational study with a 

“treatment” indicator variable and a covariate.  We assume the outcome variable is 

generated from a linear regression model that includes this treatment indicator and the 

covariate.  The first section provides an expression for Bc, the bias due to the covariate 

within subclass; an expression of the variance of the subclass-specific treatment effect 

estimate, Vc; and a lemma giving a condition when Bc is nonnegative.  The second 

section develops theorems to compare the bias and variance of the two estimators under 

EF subclassification.  The third section develops a theorem for comparing variances 

between the EF-IV and EV-IV estimators.  In the Appendix, Section A4.1 provides 
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acronyms, notation tables and a flow chart diagram for each step in the theoretical 

derivation.  We extend this theory work to the situation with multiple covariates in 

Appendix A4.4. 

 

4.1 Expression of Bc, Vc and Lemma under a linear regression 

model 
 

We assume the outcome variable, yi, is generated under a linear regression model 

that includes a treatment indicator and a single covariate: 

 

yi = β0 + β1xi + δzi + ei                                                     (4.1) 

 

where e1, …, en ~ iid. N(0, σ2
e) with (x, z) ╨ e.  For detailed information, see Appendix 

A4.1, Table A4.1. 

 

To estimate variances of the propensity score estimators, we assume that there are 

at least two observations in both the treatment group and the control group within each 

subclass.  By definition (Section 3.4), the propensity score estimator is given by 

 

∑∑
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1
~

)(ˆ)(ˆ δδ                                          (4.2) 

 

where 1  ,0
1

=≥ ∑
=

C

c

cc ww , with c = 1, 2, …, C indexing the subclasses. 
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Here, let si
c denote the indicator of whether subject i is in subclass c, such that si

c 

= 1 if and only if xi ∈  (ac, bc), otherwise si
c = 0, where ac, bc are lower bound and upper 

bound of subclass c, respectively; then 
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1 )( cccccc eexxyy −++−=− δβ                                     (4.3) 

 

Taking the expectation in equation (4.2) gives 

 

)()()]()([)( )(
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)(
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)(
0

)(
11

)(
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)(
1

cccccc eEeExExEyyE −++−=− δβ                       (4.4) 

 

Here, we should notice that none of )(
1

cx , )(
1

cy , )(
1

ce  are defined, except when zi = 

1 (from the treatment group) and si
c = 1 (within subclass c).  Therefore, we write )( )(

1
cxE  

as ) ,|(
~~

)(
1

cc szxE , or simply, )1 ,1|( == cszxE .  Similarly, we write )( )(
0

cxE  
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as )1 ,0|( == cszxE , write )( )(
1

ceE  as )1 ,1|( == cszeE  and )( )(
0

ceE  as 

)1 ,0|( == cszeE .  By definition, si
c is a function of xi, so that (x, z) ╨ e implies (z, sc) ╨ e 

.  Therefore both of )1 ,1|( == cszeE  and )1 ,0|( == cszeE  are zero.  Hence, we have 

 

δβ +==−===− )]1 ,0|()1 ,1|([)( 1
)(

0
)(

1
cccc szxEszxEyyE                     (4.5) 

 

The bias for subclass c is then )]1 ,0|()1 ,1|([1 ==−=== cc

c szxEszxEB β , 

wherein δ+=− c

cc ByyE )( )(
0

)(
1 .  Hence, the expectation of the propensity scores 

estimator becomes 

 

δδ += ∑
=

C

c

cc BwwE
1

~
)](ˆ[ ,                                                    (4.6) 

 

and then overall bias of the propensity score estimator is 

 

∑
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We denote the within subclass variance of )(
0

)(
1

cc yy −  by )( )(
0

)(
1
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c yyVarV −= , 

and the overall variance of the propensity score estimator by 

 

∑
=

=
C

c

ccVwwVar
1

2

~
)](ˆ[δ                                                      (4.8) 



www.manaraa.com

57 
 

 

 

(for details, see Appendix A4.1.2, A4.1.3) 

 

Next, we give a Lemma that provides a condition under which Bc is nonnegative 

for all subclasses. 

Lemma 4.1 Suppose P{z = 1 | x} = e(x) is a non-decreasing function of x ∈  R.   

Then for x∈(a, b), E(x | z = 1) ≥ E(x | z = 0)  for any a < b in R. 

Proof: 

First, we provide two identities: 
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Let f(a, b)(x | z) denote the conditional pdf of x given z when x is restricted to the interval 

(a, b).  Then 

∫
=

b

a

ba

dxzxf

zxf
zxf

)|(

)|(
)|() ,( .   Similarly, let f(a, b)(x) denote the pdf of x when 

x is restricted to the interval (a, b). 
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Using these, we can write the conditional expectations: 
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Next, since e(x) is a non-decreasing function of x, it is certainly a non-decreasing 

function in (a, b).  By the Covariance Inequality Theorem in Casella and Berger (2001), 

we have 0)]( ,[) ,( ≥xexCov ba .  Hence, 
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Therefore, ).0|()1|( ) ,() ,( =≥= zxEzxE baba  This completes the proof. 

 

4.2 Theorems comparing different weighting schemes 
 

We now compare the biases of two propensity score estimators under the same 

subclassification but using different weights.  We also examine the variances between the 

equal weights (EW) estimator and the inverse variance (IV) weight estimator. 

 

4.2.1 Discordance and concordance 

 

Consider the vector of subclass biases from a particular subclassification scheme.  

Two weighting schemes will provide two different vectors of weights.  Assessing the bias 

of two propensity score estimators using the same subclassification but different weights 
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involves all three vectors.  We first introduce the notations of discordance and 

concordance between two vectors. 

 

Consider two arbitrary vectors with the same length: a = (a1, …, ai, …, aj, …, an) 

and b = (b1, …, bi, …, bj, …, bn).  By definition, a and b are discordant if (ai - aj)(bi - bj) ≤ 

0 for all i, j.  And a and b are concordant if (ai - aj)(bi - bj) ≥ 0 for all i, j.  In other words, 

discordance indicates that as ai increases, bi is non-increasing, and concordance indicates 

that as ai increases, bi is non-decreasing.  We provide the following Lemma of 

discordance inequality and concordance inequality. 
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Lemma 4.2 If a and b are discordant, then ∑∑∑
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For discordance, the proof is similar.  This completes the proof. 

 

Lemma 4.2 is based on the well-known Chebyshev’s Sum Inequality 

(Abramowize and Stegun, 1970; Mitrinović, 1970) and is also introduced as the 

synchronous inequality in Toader (1996).  We now introduce another vector, t = (t1, …, 

ti, …, tj, …, tn) with ti ≥ 0 for all i.  Now, we develop an extension of Lemma 4.2. 
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Lemma 4.3 If a and b are discordant and t = (t1, …, ti, …, tj, …, tn) with ti ≥ 0 for all i, 

then  

∑∑∑∑
====

≥
n

i

iii

n

i

i

n

i

ii

n

i

ii battbtat
1111

. 

Proof: 

0))((                                              

)()(                                              

)()(                                              

)(                                              

1 1

1 1

1 11 11111

≥−−−=

−+−=

−+−=

−=

−=−

∑∑

∑∑∑∑

∑∑∑∑

∑∑

∑ ∑∑∑∑∑∑∑

= =

<<

><

= =

= == =====

n

i

n

j

jijiji

iijji

ji

jjiji

ji

jjiji

ji

jjiji

ji

n

i

n

j

jjiji

n

i

n

j

jjji

n

i

n

j

jjii

n

i

iii

n

i

i

n

i

ii

n

i

ii

bbaatt

baattbaatt

baattbaatt

baatt

battbtatbattbtat

 

This completes the proof. 

 

We use Lemma 4.3 to prove the theorem in the next subsection. 

 

4.2.2 Comparing biases between two propensity score estimators 

 

For a propensity score estimator using one weighting scheme, we use uc to denote 

the original (unstandardized) weight for subclass c; and use u to denote the vector of 

unstandardized weights, where u = (u1, …, uC).  We assume uc > 0 and that its 

corresponding standardized weight is 

∑
=
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c

c

c
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u
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are used, then wc
EW = 1/C; if inverse variance weights are used, then ∑

=

=
C

c cc

IV

c
VV

w
1

1
/

1
.  

We use w to denote the vector of standardized weights, where w = (w1, …, wC).  The bias 

of the propensity scores estimator using standardized weights (w) is then denoted by 

∑
=

=
C

c

cc BwwBias
1

~
)](ˆ[δ . 

 

Consider another propensity score estimator using a different weighting scheme.  

We use uc
* to denote its unstandardized weight for subclass c and use wc

* to denote the 

corresponding standardized weight for subclass c. 

 

Let B denote the vector of biases for all subclasses: B = (B1, …, BC).  We are 

interested in the biases of )(ˆ
~
wδ  and *)(ˆ

~
wδ , when u*/u and B are discordant.  While 

seeming constrained, this allows us to relate or compare these two different types of 

estimators under the same subclassification scheme, as we will indicate in two corollaries 

following the main theorem. 

 

Theorem 4.4 Assume Bc ≥ 0 for all subclasses.  If u*/u and B are discordant, then 
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Hence, if u*/u and B are discordant, then u*/w and B are discordant. 
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Therefore, 0|*)](ˆ[||)](ˆ[|
~~

≥− wBiaswBias δδ .  For concordance, the proof is similar.  This 

completes the proof. 

 

Theorem 4.4 provides a method to compare the biases of two propensity score 

estimators using different weighting schemes by determining whether the ratio of those 

two distinct vectors of unstandardized weights is discordant with B (e.g. Spearman's rank 

correlation coefficient equal to one implies concordance).  Based on this theorem, we 

develop the following two corollaries. 
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Corollary 4.4.1 For any subclassification, let wEW = (1/C, …, 1/C) be equal weights.  

Then |)](ˆ[||*)](ˆ[|
~~

EW
wBiaswBias δδ ≤  if u* and B are discordant, 

|)](ˆ[||*)](ˆ[|
~~

EW
wBiaswBias δδ ≥  if u* and B are concordant. 

 

Corollary 4.4.2 For any subclassification, let wIV be (standardized) inverse variance 

weights and wEW be equal weights.  If V = (V1, …, VC) and B are concordant, then 
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EWIV
wBiaswBias δδ ≤ .  If V and B are discordant, then 

|)](ˆ[||)](ˆ[|
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Proof: 

Let u* = 1/Vc for an IV weight.  Hence, discordance between u* and B is equivalent to 

concordance between V and B.  Apply Corollary 4.4.1, we have 

|)](ˆ[||)](ˆ[|
~~

EWIV
wBiaswBias δδ ≤ .  For discordance, the proof is similar.  This completes 

the proof. 

 

Therefore, as Corollary 4.4.2 indicates, under EF subclassification, if higher 

variance occurs with larger bias, then the EF-IV estimator has a smaller bias than the EF-

EW estimator. 

 

In practice, the Spearman's rank correlation between biases and variances of the 

within subclass treatment effect estimates is equivalent to the Spearman's rank correlation 

between the within subclass treatment effect estimates and their variances.  Spearman's 
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rank correlation can be used to evaluate whether this relationship is concordant or 

discordant. 

 

4.2.3 Comparing variances between IV and EW estimators 

 

Using Lemma 4.2, we develop the second theorem to compare the variances of 

inverse variance weighted and equal weights estimators under the same subclassification. 

 

Theorem 4.5: Under the same subclassification, let wIV be (standardized) inverse 

variance weights and wEW be equal weights, then )](ˆ[)](ˆ[
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This completes the proof. 
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Theorem 4.5 indicates that the EF-IV estimator always has a variance no larger 

than the EF-EW estimator.  This theorem has the following corollary. 

 

Corollary 4.5.1 Let wIV be (standardized) inverse variance weights and wEW be equal 

weights.  If Vc is a non-decreasing function of Bc, then |)](ˆ[||)](ˆ[|
~~

EWIV
wBiaswBias δδ ≤  

and )](ˆ[)](ˆ[
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EWIV
wVarwVar δδ ≤ , so )](ˆ[)](ˆ[
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EWIV
wRMSEwRMSE δδ ≤ . 

 

4.3 Comparing variances between EF-IV and EV-IV estimators 
 

In this section, we derive a theorem for comparing variances between the EF-IV 

and EV-IV estimators.  Specifically, we provide a condition under which the variance of 

the EF-IV estimator is no larger than the variance of the EV-IV estimator.  We use VEV to 

denote the variance of the within subclass treatment effect estimator under the EV 

approach, and Vc
EF to denote the variance of the within subclass treatment effect estimate 

under the EF approach. 

 

Theorem 4.6 For the EV subclassification, let wEV-IV = (1/C, …, 1/C) be inverse variance 

(equal) weights.  For the EF subclassification, let the standardized inverse variance 

weights be wEF-IV.  Then )](ˆ[)](ˆ[
~~

IVEVIVEF
wVarwVar

−− ≤ δδ  if and only if 
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, 

the equality holds for Vc
EF = VEV. 
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Proof: 

From the proof of Theorem 4.5, 
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Here, 
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1
 is the harmonic mean of the EF

cV (s). 

This completes the proof. 
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Theorem 4.6 indicates that if the variance of the EV subclassification is bigger 

than the harmonic mean of the subclass-specific variances of the EF subclassification, 

than the EF-IV estimator has a smaller variance than the EV-IV estimator, and vice versa. 

 

We develop the following corollary of Theorem 4.6 for the situation when the EV 

subclassification is unable to produce a lower variance than the average variance of the 

subclass treatment effect estimates under the EF subclassification. 

 

Corollary 4.6.1 If ∑
=

≥
C

c

EF

c

EV V
C

V
1

1
, then )](ˆ[)](ˆ[

~~

IVEVIVEF
wVarwVar

−− ≤ δδ . 

Proof: 

By Jensen’s Inequality, we have 
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.  And the inequality 
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 is true if and only if EV
C

c

EF

c VV
C

≤∑
=1

1
.  This completes the proof. 

 

Corollary 4.6.1 indicates that when the EV subclassification does not produce a 

lower variance than the average variance of the subclass treatment effect estimates under 

the EF subclassification, then the EF-IV estimator has a smaller variance than the EV-IV 

estimator. 

 

We also extend the theory work to the situation with multiple covariates and a 

treatment indicator in the Appendix A4.4. 
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Chapter 5. PROPENSITY SCORES BALANCING 

SUBCLASSIFICATION 

 

In this chapter, we propose a novel propensity scores balancing subclassification, 

the PSB method.  Two weighting schemes will be applied to a PSB estimator, which 

include the inverse variance (IV) weights and proportional weights (PW).  We implement 

simulations to examine the performance of the PSB estimators when compared with other 

treatment effect estimators studied in Chapter Three, in terms of bias, variance and 

RMSE.  Our PSB estimator tends to use many more subclasses than the five that are 

typical of the other propensity score estimators.  For this reason, we compare our PSB 

estimator with the other propensity score estimators when they use more than the 

traditional number of five subclasses.  We also examine the relative performance of our 

estimator and the other estimators in the situation where a proportion of control subjects 

have propensity scores lower than the minimum propensity score in the treatment group. 

This situation is discussed by Dehejia and Wahba (1999) and Strumer et al. (2007). 

In the first section, we describe the PSB subclassification method.  In the second 

section, under a correctly specified regression and propensity score model, we implement 

a simulation to examine the performance of the PSB-PW and PSB-IV estimators in 

comparison with the ordinary least square (OLS) estimator and other propensity score 

estimators in Chapter Three.  In the third section, we conduct a second simulation to 

model the situation of control subjects with propensity scores lower than the minimum 

estimated propensity score in the treatment group.  We apply the PSB method by 

restricting the lowest subclass size to avoid trimming (Strummer et al., 2007), but such a 
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restriction is not feasible for the other propensity score subclassification approaches.  A 

summary of simulation results is provided in the fourth section.  In the Appendix Section 

A5.4, we provide a flow chart diagram of the simulation procedure. 

 

5.1 PSB subclassification method 
 

Rosenbaum and Rubin’s (1983) first propensity score theorem states that 

conditional on propensity scores, the observed covariates and the treatment indicator are 

independent.  This indicates that if a propensity score subclass is “homogeneous,” 

implying the subjects within it have similar propensity scores, then the covariates for the 

treated subjects and the control subjects in that subclass should be approximately 

independent of their treatment assignment.  Subsequently, the within subclass treatment 

comparison for homogeneous subclasses should be unbiased in terms of observed 

covariates.  Our approach, therefore, is to test the difference in mean propensity scores 

between the treatment group and the control group to assess the balance within each 

subclass.  Dehejia and Wahba (1999, 2002) apply a two-sample t-test to assess whether 

the means of the estimated propensity scores within each subclass are “identical” (or 

“balanced” in Imbens 2004).  In addition, it has been suggested that implementing a large 

number of subclasses would reduce more bias from the propensity scores estimator 

(Cochran 1968, Imbens 2004, Myers and Louis 2007).  These discussions provide some 

background for an alternative subclassification scheme that involves forming a large 

number of subclasses, each with homogeneous propensity scores. 
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In our propensity scores balancing (PSB) subclassification method, we form 

subclasses within which estimated propensity scores in the treatment group and the 

control group are tested for homogeneity by using a two-sample t-test.  To compute the 

variance and perform a two-sample t-test, we require each PSB subclass be formed with 

at least two observations in both the treatment group and the control group.  When this 

requirement is satisfied, the researcher can decide how many additional observations 

would be assigned initially to form a subclass.  The PSB subclassification approach adds 

observations one at a time to the subclass to adjust its boundary.  The subclass boundary 

will be formed when the two-sample t-test of the estimated propensity scores between the 

treatment group and the control group becomes “nonsignificant’’ (a pretermined p-value 

can be used, such as 0.05 or 0.01).    For detailed information, see Appendix-Figure A5.1 

and A5.2. 

 

According to Rosenbaum and Rubin’s (1983) theorem, for each PSB subclass 

with homogeneous propensity scores, the distribution of the covariates within the 

subclass will be identical.  This in turn will help to remove bias due to observed 

covariates from the propensity scores estimator.  The PSB subclassification method uses 

no predetermined number of subclasses.  The PSB subclasses will not necessarily, or 

even typically, have equal sizes.  Therefore, when using subclass sizes as weights, the 

PSB approach uses proportional weights rather than the equal weights under the EF 

approach. 

 

The algorithm of the PSB subclassification procedure is provided below: 
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(1) Sort the estimated propensity scores in an ascending order; 

(2) From the lower end of the estimated propensity scores, assign a pre-

determined number of observations (e.g., we use 10 in our simulation study) 

to form a subclass. If there are at least two observations in the treatment group 

and the control group, then move to step (3).  Otherwise, the size of this 

subclass will be increased by one observation at a time until both the 

treatment group and the control group have at least two observations; 

(3) Perform a two sample t-test on the estimated propensity scores between the 

treatment group and the control group in the subclass from step (2).  Assume 

p-value = 0.05 is adopted, if the p-value ≥ 0.05 then the current observations 

will form the subclass; if the p-value < 0.05, the size of this subclass will be 

adjusted by adding one observation at a time until p-value ≥ 0.05, is achieved 

from a two sample t-test; 

(4) Repeat step (2) and (3) to form additional subclasses until the 50th percentile 

of the estimated propensity scores is reached; 

(5) From the upper end of the estimated propensity scores, assign a pre-

determined number of observations (e.g., we use 10 in our simulation study).  

Follow a similar procedure as in step (2) to achieve a minimum of two 

observations from both the treatment group and the control group.  Then 

repeat steps (3) and (4) to form subclasses until the 50th percentile of the 

estimated propensity scores is reached; 
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(6) Combine the two nearest subclasses on either side of the 50th percentile in 

order to form the subclass around the 50th percentile of the estimated 

propensity scores. 

 

A flow chart diagram of the above PSB procedure is provided in the Appendix 

Section A5.1. 

 

5.2 A simulation study under a correctly specified regression 

and propensity scores model 
 

In this section, we implement a simulation study by generating the treatment 

indicator and the outcome variable.  The bias of the mean, variance and RMSE of these 

estimators are obtained: OLS, equal frequency equal weights (EF-EW), equal frequency 

inverse variance weights (EF-IV), equal variance inverse variance weights (EV-IV), 

propensity scores balancing proportional weights (PSB-PW) and propensity scores 

balancing inverse variance weights (PSB-IV). 

 

5.2.1 Simulating  data involving two independent covariates (x1, x2) 

 

We define two covariates,  x11, …, x1n ~ iid. N(0, 1), and independently, x21, …, 

x2n ~ iid. N(0, 1).  In this simulation, we take the treatment indicator values (zi) to be 

simulated as independent Bernoulli random variables under a logistic model: 
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zi  | x1i, x2i ~ Bernoulli(πi) 

πi = Pr(zi = 1 | x1i, x2i) = {1 + exp[-(γ0 + γ1x1i + γ2x2i)]}
-1                         (5.1) 

 

We generate the outcome variable using the model: 

 

yi = β0 + β1x1i + β2x2i + δzi + ei                                              (5.2) 

 

where e1, …, en ~ iid. N(0, 1) with e ╨ (x1, x2 , z), given e = (e1, …, en), x1 = (x11, …, x1n), 

x2 = (x21, …, x2n), z = (z1, …, zn) and ╨ denotes independence.  For additional 

information, see Appendix A3.1, Table A3.2. 

 

We assume the same parameter values that were introduced by Drake (1993), 

where β0 = 1, β1 = 1, δ = 1, β2 = 1; γ0 = 0, γ1 = 0.4, γ2 = 0.4.  These parameters provide a 

simple model to implement in the simulation.  This set of coefficients gives both 

covariates an equal influence on generating the propensity scores and the outcome 

variable.  Based on the performance pattern of the EF and EV approaches observed in 

Chapter Three, using these parameter values in an evaluation of the PSB method provides 

an indication of whether the values of β2 and γ2 should be changed under correctly 

specified propensity score models and regression models. 
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5.2.2 Estimation of regression and propensity score models 

 

We will fit the regression model to obtain the OLS estimator of the treatment 

effect and fit the logistic regression model to obtain the propensity score estimators of the 

treatment effect.  Both the regression model and the propensity scores model use the 

correct specification given above.  Table 5.1 summarizes the models used to fit the 

outcome model or the propensity scores model (subscript i is ignored for simplicity). 

 

Table 5. 1 Model specifications fitting the outcome or the propensity score models 

Covariates OLS estimator 

(x1, x2) True propensity scores: 

π = {1 + exp[-(γ0 + γ1x1 + γ2x2)]}
-1 

Outcome model: 

y = β0 + β1x1 + β2x2 + δz + e 

Propensity scores estimators (EF-EW, EF-IV, EV-IV, PSB-EW, PSB-IV) 

Propensity scores model: 

e(x) = {1 + exp[-(γ0 + γ1x1 + γ2x2)]}
-1 

True outcome: 

y = β0 + β1x1 + β2x2 + δz + e 

 

5.2.3 Measuring the performance of treatment effect estimators 

 

We generated samples to assess the performance of the different treatment effect 

estimators.  We created 1000 simulated samples, each with 1000 observations.   Among 
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those 1000 simulated samples, we obtained treatment effect estimators under each of the 

methods of Table 5.2.  We computed bias, variance and root mean square error for all 

estimators.  The PSB approach typically results in a very large number of subclasses.  In 

our simulation, the PSB produced between 56 and 88 subclasses.  Since each random 

sample contains 1000 observations, EF or EV approaches may not be able to produce 50 

or more subclasses because there may not be enough observations in either the treatment 

group or the control group for some subclasses. 
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Table 5. 2 The bias of the mean, variance and RMSE for the treatment effect 

estimators using a correctly specified propensity scores model and a correctly 

specified regression model for covariates (x1, x2) 

Estimator Number of Subclasses bias average Var(
~
δ̂ ) RMSE 

OLS  0.0015 0.0046 0.0680 

PSB-PW range:  (56, 88) 0.0100 0.0054 0.0742 

PSB-IV 0.0045 0.0085 0.0922 

EF-EW 5 0.0793 0.0054 0.1081 

EF-IV 0.0660 0.0053 0.0981 

EV-IV 0.0723 0.0053 0.1028 

EF-EW 10 0.0323 0.0051 0.0781 

EF-IV 0.0250 0.0050 0.0752 

EV-IV 0.0296 0.0051 0.0771 

EF-EW 20 0.0144 0.0049 0.0716 

EF-IV 0.0106 0.0050 0.0718 

EV-IV 0.0184 0.0051 0.0727 

 

Table 5.2 indicates that the PSB approach removes more bias as compared to the 

EF and EV approaches when five subclasses are used for those approaches.  The biases of 

the PSB estimators are similar to the OLS estimator.  The variance of the PSB-IV 

estimator is larger than those of the other estimators.  The RMSE of the PSB estimators 
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are smaller than those of the other propensity score estimators when five subclasses are 

used. 

 

The average bias of the EF and the EV estimators improve when the five 

subclasses are split to create 10 subclasses, and more so for 20 subclasses, making them 

closer to those using the PSB approach.  The variances of the EF and EV estimators using 

10 or 20 subclasses remain similar to those obtained when using five subclasses.  The 

RMSE of the EF and the EV estimators further improve when using 10 subclasses.The 

RMSE of the EF and EV estimators using 20 subclasses are smaller than those of the PSB 

estimators. 

 

Overall, the PSB approach is similar to the more traditional approaches when 

more than the usual number of five subclasses is used in those approaches. 

 

5.3 A simulation study with imbalance in the lowest subclass 
 

5.3.1 Simulating  data and estimating the treatment effect 

 

Expanding on the model in Section 5.2, we now take one of the two independent 

covariates, x2, to have a different mean and a higher SD than before; namely, let x21, …, 

x2n ~ iid. N(1, 2).  In this simulation, the treatment indicator values (zi) remain simulated 

as independent Bernoulli random variables under a logistic model as illustrated in 

equation (5.1).  We intend to simulate the situation in which a proportion of control 



www.manaraa.com

81 
 

 

subjects have propensity scores lower than the minimum estimated propensity score 

among subjects in the treatment group.  We accomplish this by introducing a negative 

coefficient for covariate x2, we choose γ2 = -1.1.  All other parameters remain the same as 

in Section 5.2.1. 

 

The control subjects with lower propensity scores than the minimum propensity 

score among subjects in the treatment group are then excluded from the analysis (Dehejia 

and Wahba 1999, Stürmer et al. 2007).  However, if we want to make inferences based on 

the entire sample, we can implement the PSB method simply by restricting the size of the 

lowest subclass.  The adjusted algorithm for the PSB approach in this situation is 

provided as follows: 

 

(1) From the lower end of the estimated propensity scores, assign a pre-

determined number of observations (e.g., we use 10 in our simulation study) 

to form a subclass.  The size of this subclass will be increased by one 

observation at a time until the treatment group has two observations; 

(2) From the upper end of the estimated propensity scores, assign a pre-

determined number of observations (e.g., we use 10 in our simulation study) 

to form a subclass.  If there are at least two observations in the treatment 

group and the control group, then move to step (3).  Otherwise, the size of this 

subclass will be increased by one observation at a time until both the 

treatment group and the control group have at least two observations; 
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(3) Perform a two sample t-test on the estimated propensity scores between the 

treatment group and the control group in the subclass from step (2).  Assume 

p-value = 0.05 is adopted, if the p-value ≥ 0.05 then the current observations 

will form the subclass; if the p-value < 0.05, the size of this subclass will be 

adjusted by adding one observation at a time until a p-value ≥ 0.05, is 

achieved from a two sample t-test; 

(4) Repeat step (2) and (3) to form additional subclasses before reaching the 

upper bound of the subclass formed in step (1); 

(5) Adjust the upper bound of the subclass formed in step (1) to be adjacent to the 

PSB subclasses in step (4). 

 

For detailed information on this PSB subclassification procedure by restricting the 

size of the lowest subclass, see Appendix-Figure A5.3. 

 

We fit the same models in Table 5.1 to obtain the OLS estimator and the 

propensity score estimators of the treatment effect for this second simulation.  We wished 

to obtain 10 EF subclasses and to compare estimators.  However, we found that 15.6% of 

the simulated random samples did not have enough treatment subjects in the first quantile 

of the estimated propensity scores to allow further splitting of EF subclasses.  We 

collected 1000 of those simulated samples, each sample containing 1000 random 

observations.  We kept the number of EF subclasses at five to apply the EF approach. 

 

 



www.manaraa.com

83 
 

 

5.3.2 Simulation results  

 

Table 5. 3 The bias of the mean, variance and RMSE for the treatment effect 

estimators under the condition that a proportion of control subjects have propensity 

scores lower than the minimum propensity score among treated subjects 

Estimator Number of Subclasses bias average Var(
~
δ̂ ) RMSE 

OLS  0.0020 0.0070 0.0839 

PSB-PW range: (39, 60) -0.1673 0.0634 0.3024 

PSB-IV -0.0558 0.0574 0.2460 

EF-EW 5 -0.3159 0.0514 0.3888 

EF-IV -0.2287 0.0377 0.3000 

EV-IV -0.2936 0.0112 0.3121 

 

Table 5.3 indicates that the PSB-IV estimator has the lowest average bias and 

RMSE when compared to the other propensity score estimators.  The PSB-PW estimator 

produces a larger average bias and RMSE than the PSB-IV estimator, but its average bias 

is still lower than the EF and EV estimators.  The variances of the PSB estimators are 

larger than those of the other estimators.  The EF and EV estimators all produce much 

larger average biases and RMSE than those of the PSB estimators.  Because the 

regression model is correctly specified, as we expected, the OLS estimator has the lowest 

average bias and RMSE when compared to propensity score estimators.  These 

simulation results suggest that under the situation of correct regression model 
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specification, researchers should use the OLS estimator because propensity score 

adjustments are not needed. 

 

5.4 Summary of PSB simulation studies. 

 

Our simulation studies indicate that under a correctly specified regression model 

and a propensity scores model: 

� The PSB approach removes more bias as compared to the EF or EV 

approaches with five subclasses.  The biases of the PSB estimators are similar 

to the OLS estimator.  The RMSE of the PSB-PW estimator is slightly larger 

than that of the OLS estimator and is smaller than that of the other propensity 

score estimators. 

� The average biases of the EF and EV estimators improve when observations 

are split to create 10 or 20 subclasses. 

� When a proportion of the control subjects have propensity scores lower than 

the minimum of the estimated propensity scores in the treatment group, the 

PSB-IV estimator produces the lowest average bias and RMSE among 

propensity score estimators by restricting the size of the lowest subclass.  

However, the OLS estimator provides the lowest average bias and RMSE 

when compared to propensity score estimators, which suggests that no 

propensity score adjustment is needed under this condition. 
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In circumstances where a linear model may be inappropriate, and when a 

proportion of control subjects have propensity scores lower than the minimum propensity 

score among treated subjects, the PSB-IV estimator approach may be used to produce 

estimators with lower average bias than the EF and EV approaches by restricting the size 

of the lowest subclass. 
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Chapter 6. CONCLUSIONS 

 

In this thesis, we explored propensity score adjustment methods and proposed a 

novel subclassification approach to estimate the “treatment” effect in observational 

studies.  In Chapter Two, we reviewed the single covariate adjustment method using 

subclassification.  We discuss propensity score adjustments that incorporate multiple 

covariates in observational studies.  We reviewed propensity score methodology and 

approaches adopted by researchers, such as matching, equal frequency (EF) 

subclassification, further splitting of EF subclasses, and equal variance (EV) 

subclassification.  Two weighting schemes used in propensity score subclassification 

estimators were also discussed: equal weights (EW) and inverse variance (IV) weights. 

 

In Chapter Three, we evaluated the EV subclassification approach under model 

misspecification.  We also examined EF subclassification estimators and the ordinary 

least square (OLS) estimator of the treatment effect.  Our simulation results indicated that 

under correctly specified propensity score models, the EF-IV estimator resulted in a 

lower bias and root mean square error (RMSE) than the EF-EW and EV-IV estimators.  

After excluding a quadratic term to misspecify the propensity score and regression 

models, the EF-IV estimator resulted in the lowest bias and RMSE as compared to the 

EF-EW, EV-IV and OLS estimators (the OLS estimator generated the largest bias and 

RMSE as compared to the propensity score estimators).  When the propensity score 
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models and regression models were misspecified by omitting an independent covariate, 

we concluded that none of these estimators work well. 

 

Our simulation showed that the EV subclassification approach requires much 

more computation than the EF subclassification method.  For quadratic term 

misspecification, depending on the coefficient of the quadratic term used to generate the 

propensity scores, 6-19% of the time the EV subclassification procedure did not produce 

five EV subclasses from 1000 random samples (Appendix A3.5.3). 

 

In Chapter Four, we developed three theorems that provide theoretical results for 

comparing the different propensity score subclassification estimators.  Our first theorem 

indicates that under EF subclassification, if higher variation occurs with larger bias for 

within subclass treatment effect estimates, then the EF-IV estimator has smaller overall 

bias than the EF-EW estimator.  Our second theorem indicates that the EF-IV estimator 

always has a variance no larger than the EF-EW estimator.  This theoretical finding 

provides corroboration to the statement about the IV weights underestimating the overall 

variance of the treatment effect estimator (Chapter Two).  This underestimation leads to 

the EF-IV estimator with lower variance than the EF-EW estimator.  Our third theorem 

indicates that when the variance of an EV subclassification is larger than the harmonic 

mean of the variances of the within subclass treatment effect estimators, under EF 

subclassification, then the EF-IV estimator has lower variance than the EV-IV estimator. 
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In Chapter Five, we proposed a new propensity score balancing (PSB) 

subclassification method.  Our proposal is a subclassification approach to form 

“homogeneous” propensity score subclasses.  We compared this method to the more 

traditional approaches when five subclasses are used.  Our simulation results indicate that 

under a correctly specified model for propensity scores and a correctly specified 

regression model, the PSB approach removes more bias than the EF and EV approaches 

with five subclasses.  The biases of both PSB estimators are similar to the OLS estimator, 

while the variances of the PSB estimators are larger than other estimators.  This is 

because the PSB approach tends to generate a large number of subclasses with potentially 

a small number of observations assigned initially to each subclass.  Smaller subclass sizes 

have larger subclass variation, which in turn increases the overall variances of the PSB 

estimators.  We also simulate a situation where a proportion of the control subjects have 

propensity scores lower than the minimum of the estimated propensity scores in the 

treatment group.  By restricting the size of the lowest subclass, the PSB-IV estimator 

produces the lowest bias and RMSE among the propensity score estimators even though 

it has a larger variance than the EF and EV estimators.  However, due to the lowest 

average bias and RMSE provided by the OLS estimator in comparison with propensity 

score estimators, which suggests that researchers should use the OLS estimator under this 

condition.  Our proposed PSB subclassification method can produce many subclasses 

conditional on the data.  Cochran (1968), Imbens (2004) and Myers and Louis (2007) 

suggested that generating a large number of subclasses would reduce more bias from the 

propensity scores estimator.  The trade-off is that the PSB estimators can have larger 

variances due to smaller subclass sizes. 
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6.1 Discussion 
 

The major results of this thesis research can be summarized as follows.  First, 

further splitting of five EF subclasses into 10 or 20 subclasses improves the overall bias 

of the treatment effect estimator under correctly specified propensity score models.  

Hence, this makes the EF-EW estimator competitive with other propensity score 

estimators given its ease of use under this condition. 

 

Second, our simulation results in Chapter Three indicate that the EF-IV estimator 

provides the lowest bias and variance under a quadratic term misspecification when 

compared to the EF-EW, EV-IV and OLS estimators. 

 

Third, the concordance or discordance between the bias and variance of the 

subclass treatment effect estimates should be considered when assigning weights to the 

propensity score estimator.  In our theoretical investigation, Corollary 4.4.1 indicates that 

when higher variance occurs with larger bias under the EF subclassification, the inverse 

variance weights produce smaller bias as compared to equal weights.   

 

Fourth, Theorem 4.4 provides a way to evaluate the overall bias between two 

weighting schemes by comparing the ratio of the different weights; this theorem 

determines the weighting scheme that produces the smallest overall bias. 
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Fifth, we proposed our PSB subclassification method.  This method attempts to 

create subclasses that are homogeneous in their propensity score distributions.  Our 

simulation results indicate that, in some circumstances, the PSB-IV estimator produces a 

smaller bias and RMSE than the EF-EW, EF-IV and EV-IV estimators. 

 

6.2 Future work 
 

Our proposed PSB subclassification method can be further modified to address 

trimming.  In Section 5.3, we simulated control subjects with low estimated propensity 

scores.  We could also consider treatment subjects that have high estimated propensity 

scores.  Alternatively, we could consider both control subjects with low estimated 

propensity scores and treatment subjects with high estimated propensity scores.  To 

accommodate these conditions, we can adapt a restricted PSB subclassification method 

(rPSB).  Using rPSB subclassification, the estimated propensity scores between the 

treatment and the control group may not be “homogeneous” for the lowest and highest 

subclasses.  We can expand our simulations to the three scenarios of possible trimming 

subjects.  We can also implement model misspecifications.  We can then evaluate the 

PSB and rPSB subclassification methods using simulations.  We can compare the 

performances of PSB and rPSB estimators with other treatment effect estimators studied 

in Chapter Three. 

 

Secondly, we propose exploring an alternative weighting scheme by using a non-

parametric measure: the inverse Kolmogorov-Smirnov distance (K-S distance) of the 
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estimated propensity scores between the treatment group and the control group within a 

subclass.  This is called inverse K-S distance weights.  The K-S distance is a non-

parametric estimate of the maximum distance between two cumulative distribution 

functions (cdf.).  For propensity score estimators, equal weights have been adopted by 

most researchers and inverse variance weights have been used by some researchers; we 

want to provide an extra choice of weights.  Propensity scores summarize the information 

from all observed covariates.  Hence, we could use the estimated propensity scores to 

obtain the K-S distance for each subclass between the treatment and control groups.  A 

relatively large K-S distance estimate may indicate that there is an imbalance of 

covariates between the treatment and control groups for a subclass.  This will induce bias 

to the estimated treatment effect within the subclass.  Using inverse K-S distances creates 

smaller weights for imbalanced subclasses.  Therefore, more bias might be removed from 

imbalanced subclass treatment effect estimators with smaller inverse K-S distance 

weights, which in turn produces lower overall bias.  In addition to equal weights and 

inverse variance weights, researchers will have another weighting scheme to choose from 

and can apply Theorem 4.4 to determine which weighting scheme would produce the 

smallest overall bias of the treatment effect estimator. 

 

We feel our research contributes to the field of propensity score adjustments by 

providing new theorems to compare the overall bias and variance between propensity 

score estimators using different weighting schemes.  We also present an alternative 

subclassification method that focuses on creating homogeneous propensity score 

subclasses for reducing the overall bias that may be used in some circumstances. 
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A1.1 Glossary 
 

MCAR: missing complete at random 

MAR: missing at random or ignorable 

pdf.: probability density function 

cdf.: cumulative distribution function 

EF: equal frequency (subclassification) 

EV: equal variance (subclassification) 

EW: equal weights 

IV: inverse variance weights 

OLS: ordinary least square 

PR: percentage relative 

BM: bias of the median 

MB: mean bias (bias of the mean) 

SD: standard deviation 

RMSE: root mean square error 

PSB: propensity score balancing subclassification 

K-S distance: Kolmogorov-Smirnov distance 
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A3.1 Acronyms, Notations and simulation procedure diagram 

 

Table A3.1 summarizes the acronyms used in this chapter. 

Table A3. 1 Acronyms 

Acronym Description 

OLS ordinary least square 

EF equal frequency (subclassification) 

EV equal variance (subclassification) 

EW equal weights 

IV inverse variance weights 

PR percentage relative 

BM bias of the median 

MB mean bias (bias of the mean) 

SD standard deviation 

RMSE root mean square error 

 

Table A3.2 summarizes the notations used in this chapter. 
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Table A3. 2 Notations 

Notation Description Section 

n 

x1i, x2i 

 

xi 

γ0, γ1, γ2 

πi 

zi 

 

δ 

β0, β1, β2 

ei 

yi 

total number of subjects in the sample 

two independent covariates for subject i in the model involving (x1, x2), 

for i = 1, …, n 

single covariate for subject i in the model involving (x, x2) 

true logistic regression coefficients 

true propensity scores for subject i  

treatment indicator for subject i, let zi = 1 if subject i is in the treatment 

group and zi = 0 if subject i is in the control group 

true treatment effect 

true regression coefficients 

error term for subject i  

the outcome of subject i 

§ 3.1 Simulating 

data 

e(xi) propensity scores for subject i § 3.2 PS model 

(c)
 superscript c used to denote (within) the subclass c for most of the 

notations above in Section 3.1 

§ 3.3 EV 

subclassification 

 

c 

^ 

reg. 

cregV .
ˆ  

different notations for δ are introduced in the following: 

subscript c used to denote treatment effect in subclass c 

hat is used to denote the treatment effect estimate 

subscript reg. is used to indicate the regression application 

the estimated variance of creg .δ̂  

Figure A3.1, 

A3.2 
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1
.

−
regV  the average of cregV .

ˆ  for c = 1, …, 5 

k 

 

 

¯ 

cV̂  

wc 

 

 

)(ˆ jδ  

 

for this section, subscript k is introduced to denote the control group, k 

= 0, or the treatment group, k = 1; for k = 0, i = 1, …, n0, for k = 1, i = 

1, …, n1 

bar is used to denote the mean (of the outcome) 

the estimated variance of cδ̂  

subclass-specific weights within subclass c, 1
5

1

=∑
=c

cw ; wc =  wc
EW for 

using equal weights,  wc =  wc
IV for using inverse variance weights 

δ̂ of the jth simulated sample, for j = 1, 2, …, 1000, 

)ˆ ..., ,ˆ ,ˆ(ˆ )1000()2()1(

~
δδδδ =  

§ 3.4 Estimation 

of δ 

 

Figure A3.1 illustrates how each step in the simulation procedure flows in the 

diagram, Figure A3.2, A3.3 and Table A3.4 provide extra information for Figure A3.1. 
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Figure A3. 1 Diagram under scenario involving two independent covariates, (x1, x2) 

 

Simulate treatment indicator: zi  | x1i, x2i ~ iid. Bernoulli(πi) 
True PS: πi = {1 + exp[-(γ0 + γ1x1i + γ2x2i)]}

-1 

πi is unknown in observational study 
Simulate outcome: 
yi = β0 + β1x1i + β2x2i + δzi + ei

 § 3.1.1 

correctly specified: 
e(xi) = {1 + exp[-(γ0 + γ1x1i + γ2x2i)]}

-1 

 

misspecified: 
e(xi) = {1 + exp[-(γ0 + γ1x1i)]}

-1 

 

correctly specified: 
yi = β0 + β1x1i + β2x2i + δzi + ei

 

 

misspecified: 
yi = β0 + β1x1i + δzi + ei

 

 

§ 3.2 

PS subclassification 

EF: form five subclasses based on 
the quintiles of the estimated PS 

Estimation of PS model 

Subclass-specific estimation: 
)(

0
)(

1
ˆ cc

c yy −=δ  

)(ˆ)(ˆ)ˆ(ˆˆ )(
0

)(
1

cc

cc yraVyraVraVV +== δ

Weighted (overall) estimation of δ: 

∑
=

−=
5

1

)(
0

)(
1 )(ˆ

c

cc

c yywδ  

§ 3.3 

OLS estimation 

of δ: .
ˆ

regδ  

§ 3.4 

For )ˆ ..., ,ˆ ,ˆ(ˆ )1000()2()1(

~
δδδδ = , compute PRBM, 

PRMB, PRSD and PRRMSE of δ̂  (see Table A3.4). 

Estimation of 
regression model 

EV: see Figure A3.2 

weights 

Equal weights: 

wc
EW = 1/5 

Inverse variance weights: 

)ˆ/1/()ˆ/1(
5

1
∑
=

=
c

cc

IV

c VVw

. 

Obtain estimates )(ˆ jδ for 
OLS, EFEW, EFIV and EVIV 
 

 cδ̂ can also be obtained by  

model: yi
(c) = β0

(c) + δczi
(c)  + ei

(c) 
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Figure A3. 2 Diagram of EV subclassification under Scenario involving (x1, x2) 

 

Note for Figure A3.2: A predetermined number of iterations can be set to achieve 

approximately equal inverse variances among subclasses.  Since *1
.

ˆ −
cregV  may not be the 

same among subclasses, one can also set up a tolerance level to determine whether the 

differences among *1
.

ˆ −
cregV  are acceptable as approximately equal. 

 

EV: start with five EF subclasses 
 

(1) apply regression analysis within each EF subclass to 

obtain the etimated variance of creg .δ̂ , cregV .
ˆ  (using either 

yi
(c) = β0

(c) + β1
(c)x1i

(c) + β2
(c)x2i

(c) + δczi
(c)  + ei

(c) or 

yi
(c) = β0

(c) + β1
(c)x1i

(c) + δczi
(c)  + ei

(c)); 

(2) compute 1
.

−
regV , the 

average of 1
.

ˆ −
cregV ; 

(3) adjust the non-middle subclass boundaries (in 
the order of 1st , 5th, 2nd and 4th) so the new 

*1
.

ˆ −
cregV  of each of those four subclasses 

approximately equals 1
.

−
regV (see Figure A3.3); 

(4) compute the new *1
3.

ˆ −
regV  for 

the remaining middle subclass; 

(5) compute 1
.

−
regV

*, the 

new average of *1
.

ˆ −
cregV ; 

(6) repeat step (3) - (5) 

based on 1
.

−
regV

* to 

equvalize the etimated 

variance of creg .δ̂  

among five subclasses. 
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Note for Figure A3.1 and Figure A3.2: for the diagram under the scenario 

involving a single covariate and its squared term, (x, x2), in Figure A3.1, x1i will be 

replaced by xi, and x2i will be replaced by xi
2; the correctly specified regression model 

and propensity scores model will be excluded following Drake’s (1993) omission.  In 

Figure A3.2, x1i
(c) will be replaced by xi

(c), and x2i
(c) will be replaced by (xi

(c))2. 

 

percentiles:       0.2          0.4           0.6          0.8

Subclass c:  1st 2nd 3rd 4th 5th

e(x)

z i = 1 (treatment)zi = 0 (control)

0 1

adjust subclass 
boundaries

 

Figure A3. 3 Adjusting boundaries in the order of 1
st
, 5

th
, 2

nd
 and 4

th
 subclass 
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Table A3. 3 Percentage relative measure formulas of δ̂  

Measure Formula 

δ  mean(
~
δ̂ ) 

δ
~

  median(
~
δ̂ ) 

PRBM 100×[(δ
~

 - δ)/δ]% 

PRMB 100×[(δ - δ)/δ]% 

PRSD 100×[SD(
~
δ̂ )/δ]% 

PRRMSE {[PRMB( δ̂ )]2 + [PRSD( δ̂ )]2}1/2 

 

 

Table A3.5 displays the true parameter values. 

 

Table A3. 4 Values of parameters 

δ γ0 γ1 γ2 β0 β1 β2 

1 0 0.4 (0.4, 0.7, 1.1) 1 1 (1, 2, 3) 

3 0 0.4 (0.4, 0.7, 1.1) 1 1 (1, 2, 3) 
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A3.3.2 Example of EV only produces less than five subclasses 

 

percentiles:       0.2          0.4           0.6          0.8

Subclass c:  1st 2nd 3rd

e(x)

z i = 1 (treatment)zi = 0 (control)

0 1

Adjusted 
subclass 

boundaries

 

Figure A3. 4 EV subclassification procedure does not produce a result for five 

subclasses 
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A3.5.1 Correctly specified model involving covariates (x1, x2) 

 

Table A3.5.1. 1 PRBM for the OLS and three propensity score estimators 

using correctly specified propensity score models and correctly specified regression 

models 

Parameters 
PRBM of 

~
δ̂  

δ β2 γ2 OLS EF-EW EF-IV EV-IV 

1 1 0.4 0.2584 7.9828 6.5922 7.2794 

    0.7 -0.3078 10.0068 7.9962 9.3018 

    1.1 -0.0657 12.6586 9.7177 12.2720 

  2 0.4 0.1384 12.1111 9.3967 9.9853 

    0.7 0.1951 16.5513 12.3161 13.7956 

    1.1 0.2007 21.3605 14.9981 17.9560 

  3 0.4 -0.3334 15.1411 11.7769 13.1588 

    0.7 -0.1133 22.9553 15.6461 16.9937 

    1.1 0.2547 31.4995 19.9846 22.1701 

3 1 0.4 0.0655 2.6509 2.2054 2.3596 

    0.7 0.0674 3.3501 2.7700 3.1725 

    1.1 0.1155 4.3770 3.3814 4.1709 

  2 0.4 0.0857 3.8933 3.2217 3.4362 

    0.7 0.0483 5.6407 4.0954 4.4872 

    1.1 0.0745 7.5077 5.2929 6.2697 

  3 0.4 -0.0174 5.1354 4.2482 4.5834 

    0.7 -0.0098 7.6276 5.2931 5.5716 

    1.1 0.0769 10.3472 6.5117 7.4084 

 

The results in Table A3.5.1.1 indicate that when using correctly specified 

propensity scores, the PRBM of all propensity score estimators (EF-EW, EF-IV and EV-
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IV) increase as γ2 (i.e. the influence of x2 on the propensity scores) increases.  This 

pattern is consistent for each level of β2 (i.e. the influence of x2 on the outcome).  All 

propensity score estimators produce positive biases.  The PRBM of all propensity score 

estimators at δ=3 are smaller than they are at δ=1.  This is because the PRBM is 

computed by 100×[(δ
~

 - δ)/δ]%, so at δ=3, the denominator increases by a factor of three 

as compared to when δ=1.  Among propensity score estimators, EF-IV has a lower 

PRBM than the other two estimators, and EV-IV has a lower PRBM than EF-EW.  OLS 

has the lowest PRBM of all estimators in this investigation, which is as we expect, since 

the estimating model is correctly specified. 
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Table A3.5.1. 2 PRSD for the OLS and three propensity score estimators 

using correctly specified propensity score models and correctly specified regression 

models 

Parameters 
PRSD of 

~
δ̂  

δ β2 γ2 OLS EF-EW EF-IV EV-IV 

1 1 0.4 6.79 7.34 7.26 7.31 

    0.7 6.90 7.49 7.38 7.43 

    1.1 7.14 8.09 7.65 7.84 

  2 0.4 6.79 8.09 7.87 7.89 

    0.7 6.66 7.91 7.73 7.70 

    1.1 7.25 8.78 8.12 8.52 

  3 0.4 6.54 8.93 8.49 8.83 

    0.7 6.98 9.68 9.01 9.44 

    1.1 7.34 10.07 8.95 9.23 

3 1 0.4 2.27 2.48 2.43 2.41 

    0.7 2.23 2.41 2.40 2.44 

    1.1 2.45 2.70 2.59 2.63 

  2 0.4 2.19 2.73 2.59 2.61 

    0.7 2.27 2.82 2.67 2.68 

    1.1 2.42 2.99 2.79 2.88 

  3 0.4 2.18 2.87 2.75 2.83 

    0.7 2.21 3.17 2.88 2.96 

    1.1 2.25 3.21 2.78 2.94 

 

The results in Table A3.5.1.2 indicate that when using correctly specified 

propensity scores, the PRSD of all propensity score estimators increase as γ2 increases at 

δ=1, β2=1.  At δ=1, β2=2, the PRSD of all propensity score estimators slightly decrease as 

γ2 increases from 0.4 to 0.7, and they increase as γ2 increases from 0.7 to 1.1.  At δ=1, 
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β2=3, the PRSD of all propensity score estimators increase as γ2 increases from 0.4 to 0.7, 

and they slightly decrease as γ2 increases from 0.7 to 1.1.  At δ=3, the PRSD of all 

propensity score estimators do not show the similar pattern when δ=1.  These results also 

reveal that as β2 increases, the PRSD of all propensity score estimators increase.  The 

PRSD of all propensity score estimators at δ=3 are smaller than they are at δ=1.  This is 

because the PRSD is computed by 100×[SD(
~
δ̂ )/δ]%, so at δ=3, the denominator 

increases by a factor of three as compared to when δ=1.  Among propensity score 

estimators, in 16 out of 18 parameter combinations, EF-IV has the lowest PRSD and EV-

IV has a lower PRSD than EF-EW.  OLS has the lowest PRSD of all estimators in this 

simulation, which is as we expect. 
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Table A3.5.1. 3 PRRMSE (percentage relative RMSE) for the OLS and three 

propensity score estimators using correctly specified propensity score models and 

correctly specified regression models 

Parameters 
PRRMSE of 

~
δ̂  

δ β2 γ2 OLS EF-EW EF-IV EV-IV 

1 1 0.4 6.7903 10.8127 9.8156 10.2883 

    0.7 6.8961 12.4953 10.9645 11.9653 

    1.1 7.1455 14.7873 12.1948 14.4460 

  2 0.4 6.7943 14.2792 12.2970 12.8363 

    0.7 6.6647 18.5281 14.4931 15.7898 

    1.1 7.2576 23.4215 17.3140 20.1358 

  3 0.4 6.5398 17.6182 14.7415 15.6954 

    0.7 6.9752 24.9592 18.1341 19.7593 

    1.1 7.3461 32.7267 21.5123 24.1578 

3 1 0.4 2.2760 3.6169 3.2764 3.4063 

    0.7 2.2261 4.1749 3.6690 4.0212 

    1.1 2.4509 5.0969 4.2513 4.9833 

  2 0.4 2.1861 4.7090 4.0261 4.2088 

    0.7 2.2732 6.1935 4.8391 5.2158 

    1.1 2.4217 7.9695 5.9526 6.8997 

  3 0.4 2.1795 5.9609 5.0528 5.4015 

    0.7 2.2117 8.2908 6.0022 6.4622 

    1.1 2.2549 10.8837 7.1386 7.9919 

 

The results in Table A3.5.1.3 indicate that when using correctly specified 

propensity scores, the PRRMSE of all propensity score estimators increases as γ2 

increases.  We observe the same pattern for all propensity score estimators at each level 

of β2.  At δ=1, β2=1, 3 and at δ=3, β2=2, 3, the PRRMSE of the correctly specified OLS 
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estimator increases slightly as γ2 increases.  Table A3.5.1.3 also shows that as β2 

increases, the PRRMSE of all propensity score estimators increase.  The PRRMSE of all 

estimators at δ=3 are smaller than they are at δ=1, as obtained by {[PRMB( δ̂ )]2 + 

[PRSD( δ̂ )]2}1/2.  Among propensity score estimators, EF-IV has the lowest PRRMSE, 

and EV-IV has a lower PRRMSE than EF-EW.  OLS has the lowest PRRMSE of all 

estimators in this study which is as we expect. 
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A3.5.2 Misspecified model with a covariate omission (excluding x2) 

 

Table A3.5.2. 1 PRBM for the OLS and three propensity score estimators 

using misspecified propensity score models and misspecified regression models 

Parameters 
PRBM of 

~
δ̂  

δ β2 γ2 OLS EF-EW EF-IV EV-IV 

1 1 0.4 38.8467 42.4454 42.4563 42.6973 

    0.7 63.6339 66.8608 66.6900 66.9474 

    1.1 88.2792 91.2719 90.9991 90.9619 

  2 0.4 77.3830 80.9922 80.7373 80.9318 

    0.7 126.6983 130.2715 130.2548 130.4198 

    1.1 176.1955 178.8781 178.8499 178.9682 

  3 0.4 116.1411 119.8310 119.8196 119.8072 

    0.7 190.6813 193.9786 194.2208 193.7174 

    1.1 266.0288 268.3200 268.0300 268.5865 

3 1 0.4 12.9568 14.1038 14.0620 14.0938 

    0.7 21.1244 22.2965 22.1812 22.2519 

    1.1 29.7682 30.8179 30.8117 30.7692 

  2 0.4 25.9439 27.0475 27.0711 27.0987 

    0.7 42.0446 43.2246 43.0975 43.1800 

    1.1 58.9364 59.8422 59.8501 59.9135 

  3 0.4 38.9153 40.0536 40.0188 40.1469 

    0.7 62.9571 64.0750 64.0156 64.0850 

    1.1 88.5816 89.3763 89.4871 89.5133 

 

The results in Table A3.5.2.1 indicate that for misspecified propensity scores with 

a covariate omission, the PRBM of all propensity score estimators increase dramatically 

as γ2 increases.  This pattern is consistent with all propensity score estimators at each 
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level of β2.  The misspecified OLS estimator that omits covariate x2 follows the same 

pattern.  All estimators produce positive biases.  As γ2 and β2 increase, the PRBM of all 

estimators increase substantially.   

 

The PRBM of all estimators at δ=3 are smaller than they are at δ=1.  This is 

because the PRBM is computed by 100×[(δ
~

 - δ)/δ]%, so at δ=3, the denominator 

increases by a factor of three as compared to when δ=1.  Overall, none of the estimators 

perform well in terms of PRBM when an independent covariate is omitted from the 

propensity score models and from the regression models. 
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Table A3.5.2. 2 PRSD for the OLS and three propensity score estimators 

using misspecified propensity score models and misspecified regression models 

Parameters 
PRSD of 

~
δ̂  

δ β2 γ2 OLS EF-EW EF-IV EV-IV 

1 1 0.4 8.98 9.18 9.19 9.23 

    0.7 9.05 9.26 9.28 9.34 

    1.1 8.65 8.84 8.86 8.88 

  2 0.4 14.15 14.13 14.20 14.24 

    0.7 13.33 13.49 13.57 13.55 

    1.1 13.39 13.45 13.51 13.50 

  3 0.4 20.12 20.22 20.35 20.36 

    0.7 19.88 19.93 20.08 20.11 

    1.1 18.52 18.73 18.66 18.66 

3 1 0.4 3.05 3.12 3.134 3.11 

    0.7 2.85 2.89 2.89 2.92 

    1.1 2.89 2.95 2.96 2.97 

  2 0.4 4.62 4.71 4.73 4.73 

    0.7 4.53 4.52 4.58 4.57 

    1.1 4.31 4.35 4.36 4.36 

  3 0.4 6.77 6.80 6.80 6.79 

    0.7 6.19 6.24 6.26 6.31 

    1.1 6.10 6.13 6.16 6.15 

 

The results in Table A3.5.2.2 indicate that when using misspecified propensity 

scores with a covariate omission, at δ=1, 3 and β2=2, 3, the PRSD of all propensity score 

estimators decrease slightly as γ2 increases.  At δ=1, β2=1, the PRSD of all propensity 

score estimators increase slightly as γ2 increases from 0.4 to 0.7, and they decrease as γ2 

increases from 0.7 to 1.1.  At δ=3, β2=1, the PRSD of all propensity score estimators 
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decrease slightly as γ2 increases from 0.4 to 0.7, then they increase as γ2 increases from 

0.7 to 1.1.  The misspecified OLS estimator shows a similar pattern except at δ=1, β2=2.  

These results also show that as β2 increases, the PRSD of all estimators increase.  The 

PRSD of all estimators at δ=3 are smaller than they are at δ=1.  This is because the PRSD 

is computed by 100×[SD(
~
δ̂ )/δ]%, so at δ=3, the denominator increases three times as 

compared to δ=1.  Overall, none of the estimators performs well in terms of PRSD when 

an independent covariate is omitted from the propensity score model and from the 

regression model. 
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Table A3.5.2. 3 PRRMSE for the OLS and three propensity score estimators 

using misspecified propensity score models and misspecified regression models 

Parameters 
PRRMSE of 

~
δ̂  

δ β2 γ2 OLS EF-EW EF-IV EV-IV 

1 1 0.4 39.8482 43.5270 43.2714 43.5305 

    0.7 63.8598 67.3843 67.1912 67.3387 

    1.1 88.7667 91.7266 91.4893 91.6179 

  2 0.4 78.6804 82.2270 82.0772 82.2708 

    0.7 127.3754 130.8780 130.7482 130.8603 

    1.1 176.9333 179.7323 179.6653 179.7998 

  3 0.4 117.6982 121.0903 121.1026 121.2980 

    0.7 190.7942 193.7795 193.7847 193.9205 

    1.1 266.3356 268.9625 268.8701 269.0876 

3 1 0.4 13.2953 14.5263 14.4491 14.5167 

    0.7 21.3121 22.4762 22.4002 22.4646 

    1.1 29.8063 30.8157 30.7541 30.7895 

  2 0.4 26.2576 27.4124 27.3979 27.4574 

    0.7 42.3822 43.4465 43.3895 43.4451 

    1.1 59.1745 60.1203 60.0728 60.1136 

  3 0.4 39.3786 40.5684 40.5059 40.5480 

    0.7 63.3176 64.3530 64.3128 64.3619 

    1.1 88.7543 89.6156 89.5828 89.6089 

 

The results in Table A3.5.2.3 indicate that when using misspecified propensity 

scores with a covariate omission, the PRRMSE of all propensity score estimators 

increases drastically as γ2 increases.  This pattern is consistent with all propensity score 

estimators at each level of β2.  The misspecified OLS estimator with a covariate omission 
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follows the same pattern.  As γ2 and β2 increase, the PRRMSE of all estimators increase 

substantially.   

 

The PRRMSE of all estimators at δ=3 are smaller than they are at δ=1, as 

obtained by {[PRMB( δ̂ )]2 + [PRSD( δ̂ )]2}1/2.  Overall, none of the estimators perform 

well in terms of PRRMSE when an independent covariate is omitted from the propensity 

score models and from the regression models. 
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A3.5.3 Model with a quadratic term misspecification (omitting x
2
) 

 

Table A3.5.3. 1 PRBM for the OLS and three propensity score estimators 

using misspecified propensity scores model and misspecified regression models 

Parameters 
PRBM of 

~
δ̂  Proportion 

δ β2 γ2 OLS EF-EW EF-IV EV-IV EV-N/A 

1 1 0.4 55.0540 30.9273 13.5805 16.7561  

    0.7 76.3387 39.0552 18.1776 24.6651  

    1.1 89.8479 44.4803 19.7065 31.2844  

  2 0.4 111.5960 59.9801 12.5918 18.1536  

    0.7 151.4055 76.6458 19.0281 29.5986  

    1.1 179.8477 88.6031 24.1015 42.9639  

  3 0.4 166.4412 89.1653 11.8878 20.7355 0.177 

    0.7 228.8786 115.7972 18.2056 34.6258 0.136 

    1.1 268.6373 132.2227 23.5426 51.0012 0.064 

3 1 0.4 18.4694 10.3999 4.5970 5.7084  

    0.7 25.4915 12.8725 6.1505 8.2263  

    1.1 29.8830 14.9346 6.6572 10.6868  

  2 0.4 36.5291 19.8024 4.3274 6.2102  

    0.7 51.1085 25.9451 6.3914 10.0749  

    1.1 59.6798 29.5189 8.1019 14.1791  

  3 0.4 55.4942 29.6058 3.7125 6.9259 0.189 

    0.7 76.7960 38.6405 5.8580 11.6378 0.119 

    1.1 89.5648 43.8916 7.7963 17.1402 0.062 

Note: EV-N/A indicates that the proportion of the EV subclassification approach 

does not produce five subclasses out of 1000 random samples (Section 3.3).  

The results of EV-N/A are the same for other tables in this subsection. 
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The results in Table A3.5.3.1 indicate that under quadratic term misspecification, 

the PRBM of all propensity score estimators increase as γ2 increases.  This pattern is 

consistent with all propensity score estimators at each level of β2.  The misspecified OLS 

estimator, which omits a quadratic term, follows the same pattern.  The EF-IV has the 

lowest PRBM of all estimators in this simulation, while the OLS estimator has the 

highest PRBM.  The results show that as β2 increases, the PRBM of the OLS, EF-EW and 

EV-IV estimators increase.  However, the results obtained from the EF-IV estimator do 

not reflect that pattern.  The PRBM of all estimators at δ=3 are smaller than they are at 

δ=1.  This is because the PRBM is computed by 100×[(δ
~

 - δ)/δ]%, so at δ=3, the 

denominator increases by a factor of three as compared to when δ=1. 
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Table A3.5.3. 2 PRSD for the OLS and three propensity score estimators 

using misspecified propensity score models and misspecified regression models 

Parameters 
PRSD of 

~
δ̂  

δ β2 γ2 OLS EF-EW EF-IV EV-IV 

1 1 0.4 10.29 8.81 7.56 7.89 

    0.7 10.52 9.07 7.76 8.22 

    1.1 10.14 9.50 8.22 8.48 

  2 0.4 17.79 13.28 8.46 9.11 

    0.7 16.07 12.08 8.58 9.82 

    1.1 16.07 12.67 8.59 9.88 

  3 0.4 26.05 19.13 8.80 10.97 

    0.7 24.08 18.12 9.26 11.88 

    1.1 22.29 17.22 9.27 12.67 

3 1 0.4 3.54 3.08 2.60 2.74 

    0.7 3.37 2.91 2.53 2.69 

    1.1 3.31 3.29 2.77 2.82 

  2 0.4 5.82 4.65 2.81 3.13 

    0.7 5.61 4.28 2.88 3.23 

    1.1 5.31 4.29 2.97 3.36 

  3 0.4 8.71 6.29 2.99 3.68 

    0.7 8.10 5.905 3.09 3.96 

    1.1 7.37 5.83 3.16 4.20 

 

The results in Table A3.5.3.2 indicate that under quadratic term misspecification, 

at each level of β2, there is no clear pattern for all estimators as γ2 increases.  These 

results also show that as β2 increases, the PRSD of all estimators increase.  The PRSD of 

all estimators at δ=3 are smaller than they are at δ=1.  This is because the PRSD is 

computed by 100×[SD(
~
δ̂ )/δ]%, so at δ=3, the denominator increases by a factor of three 
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as compared to when δ=1.  Overall, the OLS estimator has the highest percentage relative 

SD, and EF-IV has the lowest PRSD of all estimators. 

 

Table A3.5.3. 3 PRRMSE for the OLS and three propensity score estimators 

using misspecified propensity score models and misspecified regression models 

Parameters 
PRRMSE of 

~
δ̂  

δ β2 γ2 OLS EF-EW EF-IV EV-IV 

1 1 0.4 56.0204 32.1665 15.5849 18.3650 

    0.7 76.9019 40.1091 19.5790 26.0662 

    1.1 90.3418 45.4292 21.2294 32.5615 

  2 0.4 112.3836 61.0151 15.2208 20.3182 

    0.7 152.4889 77.5881 20.6333 31.1008 

    1.1 180.6401 89.6126 25.4063 43.9807 

  3 0.4 168.7110 91.3191 14.7846 23.7789 

    0.7 231.2271 117.2974 20.4009 36.9556 

    1.1 270.2290 132.6870 25.5963 52.9490 

3 1 0.4 18.8745 10.8929 5.3348 6.2569 

    0.7 25.6272 13.3113 6.6116 8.6937 

    1.1 30.0473 15.2473 7.2418 10.9874 

  2 0.4 37.2443 20.2725 5.1292 6.9690 

    0.7 51.3175 26.2450 6.9663 10.5315 

    1.1 60.0477 29.8170 8.5925 14.6687 

  3 0.4 56.3381 30.2764 4.8511 7.9727 

    0.7 77.2127 39.1856 6.6446 12.4333 

    1.1 89.9871 44.3666 8.4588 17.6084 

 

The results in Table A3.5.3.3 indicate that under quadratic term misspecification, 

the PRRMSE of all propensity score estimators increases as γ2 increases.  We observe the 

same pattern for all propensity score estimators at each level of β2.  The misspecified 
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OLS estimator follows a similar pattern.  These results show that as β2 increases, the 

PRRMSE of the OLS, EF-EW and EV-IV estimator increases.  However, a similar 

pattern has not been observed in the results obtained from the EF-IV estimator.  The 

PRRMSE of all estimators at δ=3 are smaller than they are at δ=1, as obtained by 

{[PRMB( δ̂ )]2 + [PRSD( δ̂ )]2}1/2.  Overall, the OLS estimator has the highest PRRMSE, 

and EF-IV has the lowest PRRMSE of all estimators.  We also provide the results for 

using true propensity scores and the correctly specified regression model in the 

following. 

 

A3.5.4 Using true propensity scores 

 

True propensity scores are generated under two scenarios.  In one scenario, true 

propensity scores are generated from two independent covariates.  In another scenario, 

true propensity scores are generated from one covariate and its square.  Ideally, the true 

propensity scores provide the “best” possible situation with respect to propensity scores 

estimation.  We can see the effect of estimating the propensity scores from Section 3.5.1 

and A3.5.1, which shows that results using estimated propensity scores are very similar to 

results using true propensity scores. 

 

A3.5.4.1 Two independent covariates (x1, x2) 

 

Under this scenario, the results of the OLS estimator are the same as they are in 

Section 3.5.1. 
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Table A3.5.4.1. 1 PRBM for the OLS and three propensity score estimators 

using true propensity scores and correctly specified regression models for (x1, x2) 

Parameters 
PRBM of 

~
δ̂  

δ β2 γ2 OLS EF-EW EF-IV EV-IV 

1 1 0.4 0.2584 7.9935 6.4839 7.1960 

    0.7 -0.3078 10.2172 8.0307 9.3445 

    1.1 -0.0657 12.4214 9.5089 12.0687 

  2 0.4 0.1384 11.9425 9.4926 10.0540 

    0.7 0.1951 16.5535 12.1748 13.8818 

    1.1 0.2007 21.6156 15.2071 18.0531 

  3 0.4 -0.3334 15.1627 12.1306 12.9605 

    0.7 -0.1133 22.7805 15.2906 17.2285 

    1.1 0.2547 31.1220 19.8846 22.0174 

3 1 0.4 0.0655 2.6894 2.3015 2.3691 

    0.7 0.0674 3.3819 2.8045 3.2839 

    1.1 0.1155 4.3855 3.4471 4.1359 

  2 0.4 0.0857 3.9068 3.0665 3.3242 

    0.7 0.0483 5.5606 4.1123 4.4783 

    1.1 0.0745 7.4166 5.2643 6.2034 

  3 0.4 -0.0174 5.1016 4.3000 4.6936 

    0.7 -0.0098 7.7401 5.2908 5.6467 

    1.1 0.0769 10.4917 6.5388 7.2311 

 

The results in Table A3.5.4.1.1 indicate that when using true propensity scores, 

the PRBM of all propensity score estimators increase as γ2 (i.e. the influence of x2 on the 

propensity scores) increases.  This pattern is consistent with all propensity score 

estimators (EF-EW, EF-IV and EV-IV) at each level of β2 (i.e. the influence of x2 on the 

outcome).  All propensity score estimators produce positive biases.  These results also 
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show that as β2 increases, the PRBM of all propensity score estimators increase.  The 

PRBM of all propensity scores estimators at δ=3 are smaller than they are at δ=1.  This is 

because the PRBM is computed by 100×[(δ
~

 - δ)/δ]%, so at δ=3, the denominator 

increases by a factor of three as compared to when δ=1.  Among propensity score 

estimators, EF-IV has the lowest PRBM, while EV-IV has a lower PRBM than EF-EW.  

OLS has the lowest PRBM of all estimators in this investigation, which is as we expect, 

since the estimating model is correctly specified. 
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Table A3.5.4.1. 2 PRMB for the OLS and three propensity score estimators 

using true propensity scores and correctly specified regression models 

Parameters 
PRMB of 

~
δ̂  

δ β2 γ2 OLS EF-EW EF-IV EV-IV 

1 1 0.4 0.1461 7.9108 6.5464 7.1295 

    0.7 -0.0872 10.0884 8.1664 9.4786 

    1.1 -0.2448 12.2969 9.4200 12.0602 

  2 0.4 0.2306 11.8418 9.5693 10.2478 

    0.7 0.3096 16.8163 12.2690 13.6785 

    1.1 0.2194 21.7645 15.3156 18.0929 

  3 0.4 -0.0923 15.2042 12.1506 13.1490 

    0.7 -0.0476 22.8755 15.6814 17.2711 

    1.1 0.1624 31.4081 19.6356 21.9471 

3 1 0.4 0.0887 2.6495 2.2170 2.3832 

    0.7 0.0633 3.4684 2.8501 3.2342 

    1.1 0.0989 4.2983 3.3640 4.2618 

  2 0.4 0.0028 3.8697 3.1307 3.3252 

    0.7 0.0386 5.5211 4.0124 4.4209 

    1.1 0.1338 7.3758 5.2576 6.2471 

  3 0.4 0.0682 5.3333 4.3708 4.7575 

    0.7 0.0190 7.6596 5.2598 5.6940 

    1.1 0.0108 10.4015 6.5322 7.2886 

 

The results in Table A3.5.4.1.2 indicate that when using true propensity scores, 

the PRMB of all propensity score estimators increase as γ2 increases.  All propensity 

score estimators show the same pattern at each level of β2.  These results reveal that as β2 

increases, the PRMB of all propensity score estimators increase.  The PRMB of all 

propensity scores estimators at δ=3 are smaller than they are at δ=1.  This is because the 
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PRMB is computed by 100×[(δ  - δ)/δ]%, so at δ=3, the denominator increases by a 

factor of three as compared to when δ=1.  Among propensity score estimators, EF-IV has 

the lowest PRMB, while EV-IV has a lower PRMB than EF-EW.  OLS has the lowest 

PRMB, which is as we expect. 

 

Table A3.5.4.1. 3 PRSD for the OLS and three propensity score estimators 

using true propensity scores and correctly specified regression models 

Parameters 
PRSD of 

~
δ̂  

δ β2 γ2 OLS EF-EW EF-IV EV-IV 

1 1 0.4 6.79 7.30 7.17 7.31 

    0.7 6.90 7.79 7.72 7.73 

    1.1 7.14 8.72 8.38 8.63 

  2 0.4 6.79 9.28 8.98 9.13 

    0.7 6.66 7.90 7.73 7.80 

    1.1 7.25 9.05 8.40 8.71 

  3 0.4 6.54 12.86 12.64 12.79 

    0.7 6.98 10.65 9.93 10.22 

    1.1 7.34 10.05 8.98 9.41 

3 1 0.4 2.27 2.48 2.44 2.44 

    0.7 2.23 2.57 2.55 2.59 

    1.1 2.45 3.02 2.93 2.98 

  2 0.4 2.19 3.10 2.98 3.04 

    0.7 2.27 2.80 2.66 2.70 

    1.1 2.42 3.04 2.86 2.93 

  3 0.4 2.18 4.30 4.22 4.33 

    0.7 2.21 3.41 3.18 3.26 

    1.1 2.25 3.30 2.83 2.97 
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The results in Table A3.5.4.1.3 indicate that when using true propensity scores, 

the PRSD of all propensity score estimators increase as γ2 increases at β2=1, but decrease 

at β2=3.  At β2=2, the PRSD of all propensity score estimators decrease as γ2 increases 

from 0.4 to 0.7, then they slightly increase as γ2 increases from 0.7 to 1.1.  At δ=1, β2=1, 

3 and at δ=3, β2=2, 3, the PRSD of the correctly specified OLS estimator increases 

slightly as γ2 increases.  These results reveal that as β2 increases, the PRSD of all 

propensity score estimators increase.  The PRSD of all propensity score estimators at δ=3 

are smaller than they are at δ=1.  This is because the PRSD is computed by 

100×[SD(
~
δ̂ )/δ]%, so at δ=3, the denominator increases by a factor of three times as 

compared to when δ=1.  Among propensity score estimators, EF-IV has the lowest 

PRSD, while EV-IV has a lower PRSD than EF-EW.  OLS has the lowest PRSD of all 

estimators in this simulation, which is as we expect. 
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Table A3.5.4.1. 4 PRRMSE for the OLS and three propensity score 

estimators using true propensity scores and correctly specified regression models 

Parameters 
PRRMSE of 

~
δ̂  

δ β2 γ2 OLS EF-EW EF-IV EV-IV 

1 1 0.4 6.7903 10.7622 9.7107 10.2124 

    0.7 6.8961 12.7486 11.2400 12.2335 

    1.1 7.1455 15.0774 12.6085 14.8285 

  2 0.4 6.7943 15.0478 13.1252 13.7245 

    0.7 6.6647 18.5788 14.4984 15.7479 

    1.1 7.2576 23.5720 17.4692 20.0783 

  3 0.4 6.5398 19.9143 17.5324 18.3457 

    0.7 6.9752 25.2336 18.5597 20.0677 

    1.1 7.3461 32.9765 21.5902 23.8779 

3 1 0.4 2.2760 3.6288 3.2931 3.4125 

    0.7 2.2261 4.3184 3.8237 4.1457 

    1.1 2.4509 5.2521 4.4641 5.2019 

  2 0.4 2.1861 4.9587 4.3205 4.5055 

    0.7 2.2732 6.1898 4.8118 5.1779 

    1.1 2.4217 7.9789 5.9833 6.8993 

  3 0.4 2.1795 6.8504 6.0781 6.4325 

    0.7 2.2117 8.3847 6.1452 6.5608 

    1.1 2.2549 10.9117 7.1192 7.8707 

 

The results in Table A3.5.4.1.4 indicate that when using true propensity scores, 

the PRRMSE of all propensity score estimators increase as γ2 increases.  We observe the 

same pattern for all propensity score estimators at each level of β2.  At δ=1, β2=1, 3 and at 

δ=3, β2=2, 3, the PRRMSE of the correctly specified OLS estimator increases slightly as 

γ2 increases.  These results show that as β2 increases, the PRRMSE of all propensity score 
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estimators increase.  The PRRMSE of all estimators at δ=3 are smaller than they are at 

δ=1, as obtained by {[PRMB( δ̂ )]2 + [PRSD( δ̂ )]2}1/2.  Among propensity score 

estimators, EF-IV has the lowest PRRMSE, while EV-IV has a lower PRRMSE than EF-

EW.  OLS has the lowest PRRMSE of all estimators in this simulation, which is as we 

expect. 
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A3.5.4.2 A single covariate and its quadratic term (x, x
2
) 

 

Table A3.5.4.2. 1 PRBM for the OLS and three propensity score estimators 

using true propensity scores and correctly specified regression models for (x, x
2
) 

Parameters 
PRBM of 

~
δ̂  

δ β2 γ2 OLS EF-EW EF-IV EV-IV 

1 1 0.4 -0.1139 21.3826 6.6092 8.4888 

    0.7 -0.3982 24.8033 6.7840 11.3165 

    1.1 -0.4850 26.6910 5.2646 13.2725 

  2 0.4 0.1686 36.8611 6.3982 7.7744 

    0.7 0.3043 43.5561 7.8635 10.9106 

    1.1 0.2857 50.8252 9.0525 16.3767 

  3 0.4 0.1439 52.0723 6.0684 7.3383 

    0.7 0.2464 64.5238 7.6980 10.2169 

    1.1 -0.3978 73.6806 10.0725 14.1167 

3 1 0.4 0.0230 7.0168 2.1918 2.9273 

    0.7 0.0072 8.2801 2.3460 3.9381 

    1.1 -0.0429 9.2416 1.8194 4.4918 

  2 0.4 0.0120 11.9193 2.0412 2.4615 

    0.7 0.0210 15.1123 2.7147 3.8347 

    1.1 -0.0063 17.0066 2.9754 5.4170 

  3 0.4 -0.0943 17.3109 1.8690 2.3036 

    0.7 -0.0669 21.5020 2.4994 3.3268 

    1.1 -0.0049 24.6366 3.1991 4.7650 

 

The results in Table A3.5.4.2.1 are very similar to the results in Table A3.5.4.1.1.  

However, at δ=1,3 and β2=1, the PRBM of the EF-IV estimator slightly decreases as γ2 
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(i.e. the influence of the quadratic term x2 on the propensity scores) increases from 0.7 to 

1.1. 

 

Table A3.5.4.2. 2 PRMB for the OLS and three propensity score estimators 

using true propensity scores and correctly specified regression models 

Parameters 
PRMB of 

~
δ̂  

δ β2 γ2 OLS EF-EW EF-IV EV-IV 

1 1 0.4 -0.1139 21.0598 6.6573 8.6520 

    0.7 -0.3982 24.6755 6.6363 11.2855 

    1.1 -0.4850 26.8094 5.1720 13.2672 

  2 0.4 0.1686 36.3735 6.2855 7.7631 

    0.7 0.3043 43.5656 7.8587 11.0499 

    1.1 0.2857 50.6402 8.8744 15.9418 

  3 0.4 0.1439 51.8913 6.0753 7.5356 

    0.7 0.2464 64.1325 7.7809 10.1618 

    1.1 -0.3978 73.2957 9.8899 14.2632 

3 1 0.4 0.0230 7.1217 2.2970 2.9467 

    0.7 0.0072 8.3032 2.3545 3.8807 

    1.1 -0.0429 9.1431 1.8255 4.5805 

  2 0.4 0.0120 11.9427 2.1193 2.6005 

    0.7 0.0210 15.0204 2.7424 3.8269 

    1.1 -0.0063 17.0273 3.0354 5.4318 

  3 0.4 -0.0943 17.2241 1.9552 2.4051 

    0.7 -0.0669 21.5834 2.5487 3.3352 

    1.1 -0.0049 24.5617 3.2754 4.7408 

 

The results in Table A3.5.4.2.2 are similar to the results in Table A3.5.4.1.2.  

However, at δ=1, 3 and β2=1, the PRMB of the EF-IV estimator decreases as γ2 increases 

from 0.7 to 1.1. 
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Table A3.5.4.2. 3 PRSD for the OLS and three propensity score estimators 

using true propensity scores and correctly specified regression models 

Parameters 
PRSD of 

~
δ̂  

δ β2 γ2 OLS EF-EW EF-IV EV-IV 

1 1 0.4 6.64 8.60 7.19 7.30 

    0.7 6.81 9.57 7.63 7.79 

    1.1 7.10 12.19 8.11 8.39 

  2 0.4 6.59 12.64 8.22 8.33 

    0.7 6.71 11.18 7.79 8.04 

    1.1 6.92 13.77 7.87 8.51 

  3 0.4 6.44 18.19 10.05 10.24 

    0.7 7.02 16.37 8.43 8.68 

    1.1 7.19 17.28 8.43 8.75 

3 1 0.4 2.22 2.82 2.42 2.45 

    0.7 2.22 3.12 2.49 2.59 

    1.1 2.45 4.24 2.72 2.76 

  2 0.4 2.19 4.32 2.80 2.87 

    0.7 2.26 3.83 2.50 2.66 

    1.1 2.43 4.51 2.78 2.84 

  3 0.4 2.25 6.02 3.43 3.43 

    0.7 2.21 5.18 2.75 2.87 

    1.1 2.37 5.60 2.74 2.85 

 

The results in Table A3.5.4.2.3 indicate that when using true propensity scores, at 

δ=1, 3 and β2=1, the PRSD of the propensity score estimators increase as γ2 increases.  At 

β2=2, 3, the PRSD of propensity score estimators decrease as γ2 increases from 0.4 to 0.7, 

then the majority of them slightly increase as γ2 increases from 0.7 to 1.1.  At each level 

of β2, the PRSD of the correctly specified OLS estimator slightly increases as γ2 
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increases, except at δ=3 and β2=3.  These results show that as β2 (i.e. the influence of the 

quadratic term x2 on the outcome) increases, the PRSD of all propensity score estimators 

increase.  The PRSD of all estimators at δ=3 are smaller than they are at δ=1.  This is 

because the PRSD is computed by 100×[SD(
~
δ̂ )/δ]%, so at δ=3, the denominator 

increases by a factor of three as compared to when δ=1.  Among propensity score 

estimators, EF-IV has the lowest PRSD, while EV-IV has a lower PRSD than EF-EW.  

OLS has the lowest PRSD of all estimators in this simulation, which is as we expect. 
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Table A3.5.4.2. 4 PRRMSE for the OLS and three propensity score 

estimators using true propensity scores and correctly specified regression models 

Parameters 
PRRMSE of 

~
δ̂  

δ β2 γ2 OLS EF-EW EF-IV EV-IV 

1 1 0.4 6.6404 22.7491 9.8006 11.3193 

    0.7 6.8227 26.4651 10.1156 13.7121 

    1.1 7.1087 29.4489 9.6179 15.6978 

  2 0.4 6.5904 38.5077 10.3447 11.3865 

    0.7 6.7148 44.9770 11.0647 13.6656 

    1.1 6.9232 52.4787 11.8622 18.0704 

  3 0.4 6.4361 54.9864 11.7476 12.7149 

    0.7 7.0208 66.1875 11.4699 13.3634 

    1.1 7.1924 75.3046 12.9947 16.7313 

3 1 0.4 2.2167 7.6587 3.3383 3.8318 

    0.7 2.2180 8.8715 3.4275 4.6652 

    1.1 2.4521 10.0788 3.2796 5.3464 

  2 0.4 2.1945 12.7001 3.5141 3.8708 

    0.7 2.2591 15.4998 3.7111 4.6601 

    1.1 2.4315 17.6135 4.1140 6.1315 

  3 0.4 2.2485 18.2458 3.9440 4.1906 

    0.7 2.2069 22.1964 3.7517 4.3996 

    1.1 2.3694 25.1922 4.2730 5.5309 

 

The results in Table A3.5.4.2.4 are very similar to the results in Table A3.5.4.1.4.  

However, at δ=1, 3 and β2=1, the PRRMSE of the EF-IV estimator increases as γ2 

increases from 0.4 to 0.7, then it slightly decreases as γ2 increases from 0.7 to 1.1.  At  

δ=1, β2=2, 3 and δ=3, β2=3, the PRRMSE of the EF-IV estimator decreases as γ2 increases 

from 0.4 to 0.7, then it slightly increases as γ2 increases from 0.7 to 1.1.  At each level of 
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β2, the PRRMSE of the correctly specified OLS estimator increase slightly as γ2 increases 

except at δ=3, β2=3.  These results also show that as β2 increases, PRRMSE of all 

propensity score estimators increase.  The PRRMSE of all estimators at δ=3 are smaller 

than they are at δ=1, as obtained by {[PRMB( δ̂ )]2 + [PRSD( δ̂ )]2}1/2.  Among propensity 

score estimators, EF-IV has the lowest PRRMSE, while EV-IV has a lower PRRMSE 

than EF-EW.  OLS has the lowest PRRMSE of all estimators in this simulation, which is 

as we expect. 
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A4.1 Notations, theory development diagram and Lemmas 

 

Table A4.1 summarizes the notations used in this chapter. 

Table A4. 1 Notations 

Notation Description Section 

(ac, bc) 

si
c 

 

 

 

2

 ,| cszx
σ  

2
eσ  

Bc 

Vc 

~
w  

lower bound and upper bound of subclass c, where c = 1, 2, …, C 

subclass indicator for subject i, where si
c = 1 if and only if xi ∈  (ac, bc) and si

c = 0 

otherwise; by definition, si
c is a function of xi such that, si

c = sc(xi); 

let si = (si
1, …, si

c, …, si
C)1xC ⇒  s = (s1, …, si, …, sn)1xnC; 

 set sc = (s1
c, …, si

c, …, sn
c)1xn; ∑

=

=
n

i

c

ii

c szn
1

)(
1 , ∑

=

−=
n

i

c

ii

c szn
1

)(
0 )1(  

conditional variance of covariate xi i = 1, … , n 

variance of error term ei, i = 1, … , n 

bias of )(
0

)(
1

ˆ cc

c yy −=δ , )ˆ( δδ −cE  

 variance of cδ̂ , )ˆ( cVar δ  

vector of the weights, ), ... ,, ... ,( 1
~

Cc wwww = , superscript EW is used to indicate 

equal weights, superscript IV is used to indicate inverse variance weights; 

superscript EF-EW, EF-IV and EV-IV are used to denote different propensity scores 

estimators 

§ 4.1 

 

 

 

 

 

 

 

 

 

§ 4.2, 

§ 4.3 
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Figure A4.1 illustrates how theoretical development flows for each step in the 

diagram. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure A4. 1 Diagram of theory development 

 

The following subsections provide a detailed development of Bc, Vc and Lemmas 

under a linear regression model. 

Suppose a linear regression model: 
yi = β0 + β1xi + δzi + ei 

Formulas of Bc, Vc and Lemmas for linear regression 
model (Section 4.1, details see Appendix A4.1) 
 

Theorem 4.2 on comparing biases 
between two weighted estimators 

EF subclassification 
(Section 4.2) 

Theorem 4.3 about comparing weighted 
variances between EFEW and EFIV 

EV subclassification 
(Section 4.3) 

Theorem 4.4 on comparing weighted 
variances between EFIV and EVIV 

Theory work extension to the 
situation with multiple 
covariates (Appendix A4.4) 
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A4.1.1 Preparing Lemmas to develop Bc and Vc under a linear 

regression model 

 

In order to develop the expression of Bc and Vc, we provide Lemmas in the 

following. 

 

Lemma A4.1 u1 ╨ u2 ⇒  v1=g1(u1) ╨ v2=g2(u2) | w1=h1(u1), w2=h2(u2), where v1, w1 are 

functions of u1 and v2, w2 are functions of u2. 

//   ) ,|() ,|(                                        

)|()|(
)()(

) ,() ,(

) ,(

) , , ,(
) ,| ,( :Proof

212211

2211
21

2211

21

2121
2121

wwvfwwvf

wvfwvf
wfwf

wvfwvf

wwf

wwvvf
wwvvf

=

===
 

The functions in Lemma A4.1 can be vector valued. 

 

Lemma A4.2 For i ≠ j, xi ╨ xj | z, s; yi ╨ yj | z, s. 

Proof: 

(yi, xi, zi) ╨ (yj, xj, zj) for all i ≠ j. 

i. (xi, xj) | z, s has the same distribution as (xi, xj) | zi, zj, si, sj  

where si = (si
1, …, si

c, …, si
C) for all i 

and si
c = 1 if and only if xi ∈  (ac, bc) ⇒  si

c = sc(xi), s = (s1, …, si, …, sn). 

Let u1 = (xi, zi), u2 = (xj, zj), v1 = xi, v2 = xj, w1 = (zi, si), w2 = (zj, sj) in Lemma 

A4.1, and note that (yi, xi, zi) ╨ (yj, xj, zj) for all i ≠ j ⇒  (xi, zi) ╨ (xj, zj).  

Therefore, by Lemma A4.1, we have xi ╨ xj | zi, zj, si, sj, which is equivalent to xi ╨ 

xj | z, s    // 
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ii. Similarly,  yi ╨ yj | z, s    // 

 

Lemma A4.3  (x, z) ╨ e ⇒  x ╨ e | z. 

Proof: 

(x, z) ╨ e ⇒  x ╨ e, z ╨ e ⇒  f(e) ╨ f(e | z) 

(x, z) ╨ e ⇒  f(x, z, e) = f(x, z)f(e) 

)|()|()()|(
)(

)() ,(

)(

) , ,(

)(

) , ,(
)| ,(

~~~~~~~
~

~~~

~

~~~

~

~~~

~~~
xefzxfefzxf

zf

efzxf

zf

ezxf

zf

zexf
zexf =====  

⇒  x ╨ e | z    // 

 

Lemma A4.4 (x, z) ╨ e ⇒  x ╨ e | z, s  where s = (s1, …, si, …, sn), si = (si
1, …, si

c, …, 

si
C). 

Proof: 

(x, z) ╨ e ⇒  (x, z, s) ╨ e ⇒  (z, s) ╨ e ⇒  f(e) = f(e | z, s) 

(x, z, s) ╨ e ⇒  f(x, z, s, e) = f(x, z, s)f(e) 

) ,|() ,|()() ,|(                    

) ,(

)() , ,(

) ,(

) , , ,(

) ,(

) , , ,(
) ,| ,(

~~~~~~~~~~

~~

~~~~

~~

~~~~

~~

~~~~

~~~~

szefszxfefszxf

szf

efszxf

szf

eszxf

szf

szexf
szexf

==

===
 

⇒  x ╨ e | z, s    // 

 

Suppose the propensity scores are estimated by the logistic regresion model: 

 

e(xi) = {1 + exp[-(γ0 + γxi)]}
-1                                           (A4.1) 
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If we ignore subscript i for convenience, the propensity scores e(x) is a one-to-one 

monotone function of x if γ ≠ 0.  Hence, condition on propensity scores e(x) is equivalent 

to condition on x. 

 

A4.1.2 Expectation of the within subclass treatment effect estimator 

 

Recall that in Section 4.1, we assumed that there are at least two observations in 

both the treatment group and the control group within each subclass.  This condition can 

be expressed mathematically as saying the observed data are in 

} ..., ,1  allfor  2 and 2:) ,{(* )(
0

)(
1

~~
CcnnszA cc =≥≥= .  If we explicitly take this condition 

into account in the expectation of )(
1

cx  in equation (4.4), we write )( )(
1

cxE  in the 

conditional form *)|( )(
1 AxE c .  In order to obtain this expectation, we need zi and si

c to 

become tractable by conditioning.  That is, by the law of iterated expectation, we express 

*)|( )(
1 AxE c  as iterated expectation *]|*) , ,|([

~~

)(
1 AAszxEE c .  Here, conditional on A*, 

i.e. given * )  ,(
~~

Asz ∈ , we have ) ,|(*) , ,|(
~~

)(
1

~~

)(
1 szxEAszxE cc = . 

 

Next, we develop 
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Notice that, if either zi = 0 or si
c = 0, then zisi

c = 0, so for all i, zisi
cE(xi | zi, si

c) = 

zisi
cE(xi | zi = 1, si

c = 1) and 

∑

∑

==

==
==

==
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c
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444 3444 21
µ

. 

 

Since (xi, zi) have the same distribution as (x, z) for all i, we have 

iszxEszxE cc

iii   allfor   )1 ,1|()1 ,1|( ===== , so 
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Therefore, by the law of iterative expectation, we have 

).1 ,1|(                   
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Similarly, in the notation of Section 4.1, we have )1 ,0|()( )(
0 === cc szxExE . 

Therefore, δβ +==−===− )]1 ,0|()1 ,1|([*)|( 1
)(

0
)(

1
cccc szxEszxEAyyE . 

If we let )]1 ,0|()1 ,1|([1 ==−=== cc

c szxEszxEB β , then 

∑
=

=
C

c

cc BwAwBias
1

~
*]|)(ˆ[δ . 

 

A4.1.3 Variance of the within subclass treatment effect estimator 

 

If we explicitly take A* into account in the variance of )(
0

)(
1

cc yy − , we write 

)( )(
0

)(
1

cc yyVar −  in the conditional form *)|( )(
0

)(
1 AyyVar cc − .  In order to obtain this 

variance, we need zi and si
c to become tractable by conditioning.  That is, by the law of 

iterated variance, we express *)|( )(
0

)(
1 AyyVar cc −  as 

*]|*) , ,|([*]|*) , ,|([
~~

)(
0

)(
1

~~

)(
0

)(
1 AAszyyEVarAAszyyVarE cccc −+− .  Here, conditional on 

A*, i.e. given * )  ,(
~~

Asz ∈ , we have ) ,|(*) , ,|(
~~

)(
0

)(
1

~~

)(
0

)(
1 szyyVarAszyyVar cccc −=−  and 

) ,|(*) , ,|(
~~

)(
0

)(
1

~~

)(
0

)(
1 szyyEAszyyE cccc −=− .  Hence, the variance of )(

0
)(

1
cc yy −  becomes 

*]|) ,|([*]|) ,|([*)|(
~~

)(
0

)(
1

~~

)(
0

)(
1

)(
0

)(
1 AszyyEVarAszyyVarEAyyVar cccccc −+−=− . 
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From Section 4.1 and A4.1.2, we have 
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~~

)(
0

)(
1

cccc szxEszxEszyyE .  Thus, 

) ,|(
~~

)(
0

)(
1 szyyE cc −  is a non-random constant, so 0*]|) ,|([

~~

)(
0

)(
1 =− AszyyEVar cc . 

 

Next, we obtain ) ,|(
~~

)(
0

)(
1 szyyVar cc −  as the following, 

)(
0

2

1

2

~~

1

1

~~

)(
0

)(
1

2

1

2

2

1

2

1

11

22

2

1

2

1

2

2

1

1

2

2

1

1
~~

2

~~

1

1

~~

)(
1

~~

)(
1

~~

)(
1

2
1

0

~~

)(
1

)(
11

~~

)(
1

~~

)(
1

2
1

~~

)(
1

)(
11

~~

)(
1

)(
110

~~

)(
1

~~~~

~~

)(
0

)(
1

~~

)(
0

~~

)(
1

~~

)(
0

)(
1

)1(
) ,|

)1(

)1(
() ,|(  Similarly, 

)(
                       

)()( 0 ,1  ,0 ,1                           

)(

)(

)(

)()(

)(

) ,|()(
) ,|() ,|(

) ,|() ,|(                        

) ,| ,(2) ,|() ,|(                        

) ,|() ,|() ,|(

A4.4 Lemmaby    ,| Since

) ,| ,(2) ,|() ,|() ,|(

c

e

n

i

c

ii

e

n

i

c

ii

n

i

i

c

ii

c

c

e

n

i

c

ii

e

n

i

c

ii

e

n

i

c

ii

n

i

c

ii

n

i

c

ii

c

ii

c

ii

c

ii

n

i

c

ii

e

n

i

c

ii

n

i

c

ii

n

i

i

c

ii

n

i

c

ii

n

i

i

c

ii

n

i

c

ii

n

i

i

c

ii

c

cc

cccc

ccccc

cccccc

n
sz

sz

sz

esz

VarszeVar

n
szsz

sz

szszszszsz

sz

sz

sz

eVarsz

sz

szeVarsz

sz

sz

esz

VarszeVar

szeVarszxVar

szexCovszeVarszxVar

szexVarszexVarszyVar

szex

szyyCovszyVarszyVarszyyVar

σσ

σσ
σ

σ

β

ββ

βδββ

=
−

=
−

−
=

===









=⇒=⇒==

====

+=

++=

+=+++=

⊥

−+=−

∑∑

∑

∑∑

∑

∑∑

∑

∑

∑

∑

∑

∑

∑

∑

==

=

==

=

==

=

=

=

=

=

=

=

=

444 3444 21

 



www.manaraa.com

148 
 

 

[ ]

2

1

1
~~

~~

2

1

1
~~~~

2

~~

1

1

~~

)(
1

)(

) ,|(
                       

for    0) ,| ,(  A4.2 Lemmaby                              

)(

) ,| ,(2) ,|()(

) ,|() ,|(

∑

∑

∑

∑ ∑∑

∑

∑

=

=

=

= <

=

=

=

≠=

+

==

n

i

c

ii

n

i

i

c

ii

ji

n

i

c

ii

n

i i j

ji

c

jj

c

iii

c

ii

n

i

c

ii

n

i

i

c

ii

c

sz

szxVarsz

jiszxxCov

sz

szxxCovszszszxVarsz

sz

sz

xsz

VarszxVar

 

Notice that, if either zi = 0 or si
c = 0, then zisi

c = 0, so for all i, zisi
cVar(xi | zi, si

c) = 

zisi
cVar(xi | zi = 1, si

c = 1) and 

.
)1(

) ,|
)1(

)1(
() ,|(  Similarly,

)(
                       

)(

)1 ,1|(
) ,|(

)(
0

2

1 ,0|

1

2

1 ,0|

~~

1

1

~~

)(
0

)(
1

2

1 ,1|

1

2

1 ,1|

2

1

1

2

1 ,1|

2

1

1

~~

)(
1

c

szx

n

i

c

ii

szx

n

i

c

ii

n

i

i

c

ii

c

c

szx

n

i

c

ii

szx

n

i

c

ii

n

i
szx

c

ii

n

i

c

ii

n

i

c

iii

c

ii

c

n
sz

sz

sz

xsz

VarszxVar

n
szsz

sz

sz

szxVarsz

szxVar

cc

cc
c

==

=

==

=

=

==

=

==

=

=
==

=

=

=
−

=
−

−
=

===

==
=

∑∑

∑

∑∑

∑

∑

∑

σσ

σσσ
 

).(
1

) ,|(          

and ,)(
1

) ,|(  Now,

22

1 ,0|

2
1)(

0
)(

0

2

)(
0

2

1 ,0|2
1

~~
0

22

1 ,1|

2
1)(

1
)(

1

2

)(
1

2

1 ,1|2
1

~~
1

eszxcc

e

c

szx

eszxcc

e

c

szx

c

c

c

c

nnn
szyVar

nnn
szyVar

σσβ
σσ

β

σσβ
σσ

β

+=+=

+=+=

==

==

==

==
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A4.1.4 Covariance of two within subclass treatment effect estimators 

 

For two different subclasses, e.g. subclass c and d, if we explicitly take A* into 
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A4.4 Theory development extension to multiple covariates 
 

We assume the outcome (yi) variable is generated from a linear regression model 

that includes a treatment indicator (zi) and multiple covariates: 

 

yi = xiβ + δzi + ei                                                     (A4.1) 
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where xi is the covariates vector of subject i, and (x, z) ╨ e, β = (β0, β1, …, βp) is the 

regression parameter vector.  We define the propensity scores of subject i as P{zi = 1 | xi} 

= e(xi). 

 

A4.4.1 Expectation of the within subclass treatment effect estimator 
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A4.4.2 Variance of the within subclass treatment effect estimator 
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A4.4.4 Theory development extension under the same subclassification 

 

Ignoring i for convenience, we provide the lemma below that if the propensity 

score is an increasing function of covariates, then the difference between the mean of the 

covariates for the treatment group and the control group is nonnegative. 

 

Lemma A4.5: Suppose P{z = 1 | x} = e(x) is an increasing function of x, then E[x | z = 1, 
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which is true by the Covariance Inequality Theorem in Casella and Berger (2001), 

because e(x) is assumed to be an increasing function of x.  // 

 

Lemma A4.5 indicates that if the propensity score is an increasing function of 

covariates, then the difference between the mean of the covariates from the treatment 

group and the control group is nonnegative. 

 

Under the same subclassification, assume Bc ≥ 0 for all subclasses, Theorem 4.4, 

Theorem 4.5 and their corollaries will apply under the situation with multiple covariates.  

We can also provide the following corollary from Theorem 4.4. 

 

Corollary A4.4.3 For any subclassification, wEW = (1/C, …, 1/C) be equal weights.  

Then |)](ˆ[||*)](ˆ[|
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wBiaswBias δδ ≥  if u* and B are concordant. 
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An example of when u*/u and B are discordant: consider subclass c and d are two 

arbitrary but distinct subclasses, where  1 ≤ c, d ≤ C, then discordance indicates 
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We develop the following corollary of Lemma A4.6. 
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Corollary A4.6.1 If 
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Corollary A4.6.2 If uc > 0 and uc is a non-increasing function of Vc for all c, then 
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We also provide Lemma A4.7 to show that for any EV subclassification, the IV 

estimator has the smallest variance. 

 

Lemma A4.7 For EV subclassification, let uc
* = 1/Vc be the inverse variance weight, 

where V1 = … Vc = … VC.  Let uc be an arbitrary weight and 
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We develop the following corollary of Lemma 4.7. 

 

Corollary A4.7.1 Suppose Bc ≥ 0 ∀  for all subclasses.  For EV subclassification, let uc
* 

= 1/Vc be the inverse variance weight, and let uc be an arbitrary weight.  If u* and B are 

concordant, then |*)](ˆ[||)](ˆ[|
~~
wBiaswBias δδ ≥  and )](ˆ[*)](ˆ[

~~
wVarwVar δδ ≤ , so 

)](ˆ[*)](ˆ[
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wRMSEwRMSE δδ ≤ . 
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Figure A5. 1 PSB Subclassification procedure 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

(1) Sort the estimated propensity scores 
in an ascending order; 
 

(2) From the lower end of the estimated propensity 
scores, assign a pre-determined number of 
observations (e.g., we use 10 in out simulation study) 
to form a subclass.  If there are at least two 
observations in the treatment group and the control 
group, then move to step (3).  Otherwise the size of 
this subclass will be increased by one observation at 
a time until both the treatment group and the control 
group have at least two observations; 

(6) Combine the two nearest subclasses on 
either side of the 50th percentile in order to 
form the subclass around the 50th percentile 
of the estimated propensity scores. 

 

(3) Perform a two sample t-test on the estimated propensity 
scores between the treatment group and the control group 
in the subclass from step (2).  Assume p-value = 0.05 is 
adopted, if the p-value ≥ 0.05 then the current 
observations will form the subclass; if the p-value < 0.05, 
the size of this subclass will be adjusted by adding one 
observation at a time until the p-value ≥ 0.05, is achieved 
from a two sample t-test.  The adjusted subclass size will 
indicate the upper bound of the subclass; 

(5) From the upper end the estimated propensity scores, 
assign 10 initial observations.  Follow a similar 
procedure as in step (2) to achieve a minimum of two 
observations from both the treatment group and the 
control group.  Then repeat steps (3) and (4) to form 
subclasses until the 50th percentile of the estimated 
propensity scores is reached; 

(4) Repeat step (2) and 
(3) to form additional 
subclasses  until the 
50th percentile of the 
estimated propensity 
scores is reached; 
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Figure A5. 2 PSB Subclassification procedure by restricting the size of the lowest 

subclass 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

(1) Sort the estimated propensity scores 
in an ascending order; 
 

(6) Adjust the upper bound of the subclass 
formed in step (2) to be adjacent to the 
PSB subclasses in step (5). 

(2) From the lower end of the estimated 
propensity scores, assign a pre-determined 
number of observations (e.g., we use 10 in 
our simulation study) to form a subclass.  
The size of this subclass will be increased 
by one observation at a time until the 
treatment group has two observations 

(5) Repeat step (3) and 
(4) to form additional 
subclasses from the 
upper end of the 
estimated propensity 
scores before 
reaching the upper 
bound of the subclass 
formed in step (2); 

(3) From the upper end of the estimated propensity 
scores, assign a pre-determined number of 
observations (e.g., we use 10 in out simulation 
study) to form a subclass.  If there are at least two 
observations in the treatment group and the 
control group, then move to step (4).  Otherwise, 
the size of this subclass will be increased by one 
observation at a time until both the treatment 
group and the control group have at least two 
observations; 

(4) Perform a two sample t-test on the estimated propensity 
scores between the treatment group and the control group 
in the subclass from step (3).  Assume p-value = 0.05 is 
adopted, if the p-value ≥ 0.05 then the current 
observations will form the subclass; if the p-value < 
0.05, the size of this subclass will be adjusted by adding 
one observation at a time until the p-value ≥ 0.05, is 
achieved from a two sample t-test.  The adjusted subclass 
size will indicates the lower bound of the subclass; 
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Figure A5. 3 Simulation study diagram for two independent covariates, (x1, x2) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Simulate treatment indicator: zi  | x1i, x2i ~ iid. Bernoulli(πi) 
True PS: πi = {1 + exp[-(γ0 + γ1x1i + γ2x2i)]}

-1 

πi is unknown in observational study 
Simulate outcome: 
yi = β0 + β1x1i + β2x2i + δzi + ei

 

correctly specified: 
e(xi) = {1 + exp[-(γ0 + γ1x1i + γ2x2i)]}

-1 

 

correctly specified: 
yi = β0 + β1x1i + β2x2i + δzi + ei

 

 

Estimation of PS model 

For )ˆ ..., ,ˆ ,ˆ(ˆ )1000()2()1(

~
δδδδ = , compute mean 

bias (MB), SD and RMSE of δ̂ . 

Estimation of 
regression model 

Obtain estimates )(ˆ jδ for 
OLS, EFEW, EFIV, EVIV, 
PSBEW and PSBIV as 
demonstrated in Section 3.4 
(Figure A 3.1). 
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